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Abstract

The convergence of Markov chains is an important subject in statistics, computer science
and computational physics. One of the main tools to prove convergence of Markov chains
is via the coupling phenomenon, especially the “coupling from the past” approach [1].
Coupling is well established for a number of physically interesting models, such as the
Ising model with heat-bath dynamics, as well as particle systems at low density, especially
hard spheres [2, 3, 4]. There are many more applications in computer science, for example
in graph theory.

Here, we study the heat-bath algorithm for hard spheres in one and two dimensions with
a continuous configuration space. In one dimension, we show that this algorithm in-
duces coupling of the entire configuration space: though the configurations never overlap
exactly, they approach each other exponentially. For the one-dimensional problem, we
determine the coupling time for a few small values of the number N of particles, and
evaluate numerically the scaling of the coupling time with N .

Using a recently developed framework [5], we interpret the hard-sphere sampling problem
in terms of coupling inside special polytopes. We observe rapid coupling for the heat-
bath algorithm for the polytopes corresponding to one-dimensional sphere configurations,
and seem to preserve rapid coupling for the two-dimensional case, also. However, the
favorable convergence and coupling properties seem to disappear when we apply the
heat-bath algorithm to more general polytopes.



1. Introduction

1.1 Markov chain Monte Carlo methods and mixing time

Markov chain Monte Carlo (MCMC) methods are a class of algorithms for sampling from
probability distributions, sharing the following property: they build and run a Markov
chain whose stationary distribution is the desired distribution. Thus, the state of the
chain after a large number of iterations can be used as a sample of the target distribution.
Since the quality of the sample improves with the number of steps, the main difficulty is
to ascertain how many iterations are needed to converge to the equilibrium distribution,
within an adequate error margin. This number of steps is the Markov chain mixing (or
correlation) time, and is a measure of the efficiency of the algorithm.

The most common MCMC methods are random walks algorithms, moving in compar-
atively small steps around the equilibrium. A well-known example is the Metropolis
algorithm, which generates moves using a jumping distribution and a method for reject-
ing proposed moves. A drawback of this algorithm is that the walk often covers ground
already explored, so that it can take a long time to explore the whole configuration space.
Devising MCMC algorithms with the same stationary distribution but exhibiting faster
convergence is an active field of research.

In most cases, correlations decrease as e−t/τ , so the dependence on the starting point is
negligible after a time t � τ . However, the correlation time τ is usually unknown, and
has to be determined through an empirical approach. This difficulty can sometimes be
overcome using the coupling from the past approach [1], which enables one to determine
the correlation time and obtain perfect samples. More generally, coupling arguments are
amongst the most useful tools to prove convergence of Markov chains.

1.2 Heat-bath algorithm and coupling for the Ising model

Heat-bath algorithms form a general class of Markov chain Monte Carlo methods that at
each step t = 1, 2, ... thermalize a sub-system with respect to its local environment.

In the heat-bath algorithm for the Ising model (see, e.g., [6]), a randomly chosen spin is
thermalized in the magnetic field produced by its neighbors. In the presence of the local
field h, a spin points up and down with probability π+h = 1

1+e−2βh and π−h = 1
1+e+2βh ,

respectively. In order to sample this distribution, at each step, we pick a random site k,
and a random number α = random(0, 1). We make the spin at site k point up if α < π+h
and down otherwise, where h is the field at site k.
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An interesting feature of this algorithm is that it preserves the natural half-order on
configurations in the Ising model: a configuration {σ1, ..., σN} is smaller than another
configuration {σ′1, ..., σ′N} if σk ≤ σ′k at each site k. With this definition, the two ground
states σ+ and σ− of the Ising model—all spins up or all spins down—are respectively
larger and smaller than all configurations.

Figure 1.1: Half-order in the Ising model (taken from [6]): σ− is smaller and σ+ is larger
than all other configurations. Some configurations are unrelated (e.g., σ2 and σ4).

It is easy to check that the heat-bath algorithm preserves the half-order, provided we use
the same random site k and the same random number α for all configurations. Thus, the
coupling (or merging) of the two extremal configurations σ+ and σ− indicates that all
configurations have coupled.

This property leads to perfect sampling for the Ising model, using the coupling from
the past framework (see [1]). If configurations σ+ and σ− have coupled in n steps, we
are certain that a sample obtained at time n from running the Markov chain with the
same parameters k and α at each step is perfectly decorrelated from the initial condition.
In practice, we implement this idea backward: at time n, we check whether the initial
extremal configurations have merged. If so, we have obtained a perfect sample.

1.3 Heat-bath algorithm applied to hard spheres

The heat-bath algorithm can also be applied to hard-sphere models by thermalizing a
randomly chosen sphere in the local environment of its neighbors, either directly in d-
dimensional space [7], or in conveniently chosen submanifolds which simplify the calcula-
tions (see Fig. 1.2). We will follow the latter strategy, which is related to the hit-and-run
framework [8].

The key difference with the Ising model is that the phase space is now continuous,
and we cannot expect the heat-bath algorithm to couple exactly: two distinct initial
configurations evolving under the algorithm will never overlap perfectly. However, they
can approach each other, and this is what we will endeavor to characterize.
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Figure 1.2: Heat-bath algorithms for two-dimensional hard spheres. Left : Algorithm of
Watanabe et al. [7] — the updated position of the central sphere is uniformly sampled
in its local d-dimensional neighborhood (red area). Right : The restriction to a lower-
dimensional sub-manifold simplifies the sampling problem — the updated position is
uniformly sampled on the accessible interval (red line).

The purpose of the present study is to analyze the heat-bath algorithm for hard spheres
in dimensions one (Chapter 2) and two (Chapter 3), and to relate it to a more gen-
eral sampling problem in polytopes (Chapter 4). In a nutshell, we show that although
the heat-bath algorithm never “really” couples, configurations approach each other ex-
ponentially. We prove coupling times for a finite number N = 2, ..., 7 of spheres in one
dimension, but must for the moment resort to numerics to obtain the scaling of the cou-
pling time with N . For two-dimensional spheres, numerical results are still encouraging.
However, the situation is more complex for general polytopes: the heat-bath algorithm
does not seem to be a general coupling algorithm for the sampling in polytopes.
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2. Heat-bath algorithm for one-d hard spheres

2.1 Definition, simplifications

For concreteness, we consider N one-dimensional hard spheres 0 ≤ x1 ≤ x2 ≤ · · · ≤
xN ≤ L on a line of length L with fixed walls that we can represent by two additional,
immobile spheres at x0 = 0 and xN+1 = L. We can suppose without restrictions that
the interval length L is equal to 1, and that the sphere radius σ is zero.

At each step n = 0, 1, . . . of the heat-bath algorithm for one-dimensional spheres, we do
the following:

1. Sample a sphere k uniformly in [1, N ];

2. Thermalize its position with respect to its neighbors: xk → xk−1 +α(xk+1− xk−1)
with α uniform in [0, 1].

2.2 Mixing (Correlation) time

The correlation time τcorr of the above heat-bath algorithm should scale as O(N3). We
only have a physicists’ argument and a simulation (Fig. 2.1) to show this. Let us consider
the mean position m =

∑
k xk/N which, in equilibrium, has fluctuations of order σ(m) ∼

1√
N
. On the other hand, one step of the algorithm moves a sphere on the scale of the

inter-particle distance ∼ 1
N , inducing a change in m of order 1

N2 . We remember that,
for a random walk of step ∆, the walker’s position after n steps has variance σ2 = n∆2.
Here, we write 1√

N
∼
√
τ corr

1
N2 . Thus, we obtain τcorr ∼ N3. We stress that this intuitive

argument is approximate, and does not take into account any less obvious dependence
in N , such as logN factors.

2.3 Coupling - partial order

We may define a partial order of configurations x and y as follows:

x ≤ y ⇔ xi ≤ yi ∀i ∈ [1, N ]. (2.1)

This order is preserved under the heat-bath dynamics if we sample at time n the same
values of k and of α for all configurations (see Fig. 2.2). There are two extremal con-
figurations for this partial order: for any configuration x, 0̂ = (0, 0, . . . , 0, 0) ≤ x and
1̂ = (1, 1, . . . , 1, 1) ≥ x.
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Figure 2.1: Autocorrelation time τcorr of mean position m. Inset : Autocorrelation func-
tion for N = 2. An exponential fit for large times n yields the auto-correlation time.

Figure 2.2: One step of the heat-bath coupling algorithm: we chose uniformly a particle
k ∈ [1, N ] (blue disk) and a number α ∈ [0, 1], the same for both configurations. We
move particle k at position αI in its available interval I. Note that C1 ≤ C2 and that
this order is conserved under the dynamics.

Two configurations x and y are said to be coupled if maxk |xk − yk| < b/N , where b
is arbitrary (in the simulations, we use b = 10−10). To analyze the coupling behavior,
we can restrict attention to the time evolution of the two extremal configurations 0̂ and
1̂: as with the Ising model, the coupling of these two configurations indicates that all
configurations have coupled.

Simulations show exponential coupling for this algorithm. We will explain this behavior
below, beginning with the case N = 2.
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2.3.1 Coupling time - Binomial formula (two spheres)

We determine the evolution of the configurations 0̂ and 1̂ under simultaneous heat-bath
dynamics. We call 0̂(n) and 1̂(n) the configurations after n updates from 0̂ and 1̂,
respectively.

Let us write yk = xk + εk for all particles1. The heat-bath algorithm (see Section 2.1)
has the following action on the ε:

(ε1, ε2)→

{
(αε2, ε2) with prob. 1/2

(ε1, αε1) with prob. 1/2
. (2.2)

Figure 2.3: Coupling tree for the heat-bath algorithm for two spheres in one dimension
(see Eq. (2.2), ε1 and ε2 describe the difference between two configurations, α1, α2, . . .
are uniform random numbers in [0, 1]). The distance between the two configurations
decreases with the number of switchbacks in the graph (changes left—right, or right—
left). See Eq. (2.4) for the exact expected maximum distance for all times n.

Further iterations of the algorithm, starting from (ε1, ε2), build a “coupling tree”. As
readily seen in Fig. 2.3, the number of α′s in (y1−x1, y2−x2) increases with the number
of switchbacks during the simulation: when we pick particle 1 after particle 2 (or vice-
versa), we gain one α on both sides in (y1 − x1, y2 − x2). On the other hand, if we pick
particle 1 (or 2) twice in a row, one α is simply replaced by another.

Since at each step there is a probability 1
2 of switching the particle to be moved, the

number of switchbacks follows a binomial distribution. For n ≥ 2, and for K ∈ {0, ..., n−
1}, the probability of having K switchbacks up to time n is

P (K,n) =

(
n− 1

K

)
1

2K
1

2n−1−K
=

(
n− 1

K

)
1

2n−1
(2.3)

1Beware: εk is not an infinitesimal, and the calculation is exact.
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At time n ≥ 2, the average maximum of 0̂(n) and 1̂(n) is given by

〈max(|x1 − y1|, |x2 − y2|)〉 =

N−1∑
K=0

P (K,n)× 〈(max(|x1 − y1|, |x2 − y2|))〉K,n

=

N−1∑
K=0

(
n− 1

K

)
1

2n−1
1

2K
=

1

2n−1

(
1 +

1

2

)n−1
=

(
3

4

)n−1
(2.4)

This exact formula demonstrates exponential coupling for the maximum of |x1− y1| and
|x2 − y2|, with characteristic time τ2 = − 1

ln 3
4

≈ 3, 476.

2.3.2 Coupling time - Transfer matrix (N = 2 . . . 7)

We have solved for the coupling timescale for N = 2, 3, ..., 7 using the transfer matrix
of the coupling algorithm. Although we must discretize the transfer matrix, the second-
largest eigenvalue seems to be independent of the discretization.

For N = 2, the recursion Eq. (2.2) can be discretized and represented through a transfer
matrix. In order to discretize the configuration space of the (ε1, ε2) we call L the number
of points on our discretized interval ]0, 1], and rescale by L, thus considering the lattice
of points (L1, L2) with integer coordinates 1, 2, ..., L.

We now associate to each discrete configuration (L1, L2) an index i, using the correspon-
dence

(L1, L2)←→ i = (L2 − 1)L+ L1 . (2.5)

In the transfer matrix A, the element Aij is the conditional probability of moving from
index j to index i.

The non-zero elements of the first contribution to the matrix, corresponding to (ε1, ε2)→
(αε2, ε2), are

A1[(L1, L2), (L
′
1, L2)] =

1

2L2
for 1 ≤ L′1 ≤ L2, (2.6)

whereas the second line of Eq. (2.2) yields

A2[(L1, L2), (L1, L
′
2)] =

1

2L1
for 1 ≤ L′2 ≤ L1. (2.7)

For L = 2, the transfer matrix is, using Eq. (2.5), Eq. (2.6), Eq. (2.7),

A = A1 +A2 =


1 1

2
1
2 0

0 1
4 0 1

4
0 0 1

4
1
4

0 1
4

1
4

1
2

 (for N = 2, L = 2). (2.8)
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N λ2 τcoup τcoup/N
3 Max. L

2 0.75 3.4761 0.4345 50
3 0.90237 9.7341 0.3605 15
4 0.95225 20.4402 0.3193 7
5 0.97321 36.8182 0.2945 5
6 0.98349 60.0856 0.2781 4
7 0.98913 95.4586 0.2783 3

Table 2.1: Coupling time-scale τcoup = −1/ log λ2 for the heat-bath algorithm for one-
dimensional hard spheres, obtained from the numerical diagonalization of the transfer
matrix, analogous to Eq. (2.8). (NB: Transfer matrix A discretized on LN points (see
Eq. (2.8)) but λ2 empirically independent of L.)

This matrix has a largest eigenvalue λ1 = 1 and a corresponding eigenvector
[
1 0 0 0

]
that is concentrated on the smallest lattice point. Surprisingly, the second-largest eigen-
value λ2 = 3

4 is also independent of L. Since the convergence time is given by τ = − 1
lnλ2

,
we recover our previous result for τ2.

Generalizing Eq. (2.2) for N particles, we obtain the following dynamics of the heat-bath
algorithm on the parameters ε1, ..., εN :

εk → (1− α)εk−1 + αεk+1 with prob. 1/N for k = 1 . . . N, (2.9)

where we use ε0 = εN+1 = 0. We have diagonalized the discretized transfer matrix
analogous to Eq. (2.8) for N = 2, . . . , 7, and computed λ2 for small L, noting, as before,
that it is independent of L. This yields a characteristic coupling time τcoup which is
nicely compatible with N3 or N3 logN scaling (see Table 2.1).

Our calculations in Table 2.1 are non-rigorous, because L is finite (while we are interested
in λ2 for L → ∞) and because we compute λ2 numerically. However, we observe that
λ2 is independent of L, something that we would like to understand. We would also
like to be able to diagonalize the transfer matrix A for large values of N , in the limit
L→∞.

2.3.3 Scaling of coupling time with N

We can study numerically the scaling of the characteristic coupling time τ with the
number N of particles (Fig. 2.4). Additionally, we give the scaling of the real coupling
time nc for b = 10−10, starting from the extremal initial conditions 0̂ and 1̂. In both
cases, we observe a scaling compatible with N3 or N3 logN behavior for large values of
N .
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Figure 2.4: Scaling of the coupling times τ and nc with N . The characteristic time τ is
obtained both numerically and exactly (from the eigenvalue λ2), while nc is the average
real coupling time obtained from simulations with b = 10−10.

2.3.4 Understanding coupling

There are two ways to understand the coupling of the heat-bath algorithm. For once,
coupling appears as a simple consequence of the preserved partial order with maximal
elements [1]: both extremal configurations 0̂(n) and 1̂(n) ≥ 0̂(n) undergo random walks.
This is enough to prove that they must couple.

We can also use a convexity argument. Indeed, in Eq. (2.9), the expected value for
〈εk〉 = (εk−1 + εk+1)/2. This means that εk will end up on the straight line between
its neighbors. With the boundary condition of ε0 = εN+1, this shows (in a non-rigorous
physicist’s sense) that the long-time limit is the straight line with all the ε = 0.

9



3. Two-d hard spheres - coupling time

3.1 Constraint graph

In a two-dimensional hard-sphere problem where spheres (here called disks) “slide” along
an axis (e.g. along the x axis), the constraint graph—linking disks that may collide with
each other—is fixed. It follows that the inequalities satisfied by the positions (x1, ..., xN )
of the non-overlapping disks remain unchanged when sliding the disks along x: the
N -dimensional polytope they define is invariant [5]. As a consequence, the hard-disk
sampling problem amounts to sampling inside a (special) polytope. We note that the
one-dimensional heat-bath algorithm inside these polytopes is similar to the hit and run
algorithm [8], except that we only consider moves along the coordinate axes, instead of
sampling random directions inside the polytope.

We now consider the coupling problem for hard-disk configurations sharing the same
constraint graph.

3.2 Simple example: N = 3 disks

We first consider N = 3 disks of radius σ, centered at (xk, yk) (k = 1, 2, 3), with x1 ≤
x2 ≤ x3 at time n = 0. Depending on the yk, the situation can be qualitatively different
from the one-dimensional case, and we may lose partial order. This happens when
y2 ∈ [y1 + σ, y2 + 2σ[ and y3 ∈]y1− 2σ, y1− σ]. In this situation, disk 1 can either collide
with disk 2 or disk 3 at its right, while disk 2 and 3 cannot collide together (Fig. 3.1). This
gives rise to more complicated steps of the algorithm, since the nearest right neighbor of
disk 1 can be, for instance, disk 2 in configuration 1 and disk 3 in configuration 2.

The updating of ε1 now depends on the positions of the disks, and we have to keep
track of them in the transfer matrix. One state of the system is thus represented by
(ε1, ε2, ε3, x1, x2, x3), and the discretized transfer matrix has L6 elements 1 .

For small L = 2, 3, 4, we find that now the eigenvalues λ = (1, ...) of the transfer matrix
depend on the discretization step, except naturally for the highest eigenvalue λ1 = 1
which is fixed by the conservation of probability. Thus, we obtain better approximation

1Since there are only 5 inequalities defining our situation, there should be a way to write a transfer
matrix of size L5.
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of the coupling time with larger values of L: 6.7173 for L = 2, 6.5161 for L = 3 and
6.4355 for L = 4. This estimate agrees with our simulation results (see Fig. 3.1).

Figure 3.1: Coupling of a non-trivial situation with N = 3 spheres in two dimensions,
averaged over 10000 runs. Half-order is lost, yet coupling remains exponential.

3.3 General case

We now assume periodic boundary conditions, and consider two configurations of N hard
disks sharing the same constraint graph along the x-direction. Numerically, we see that
the heat-bath algorithm along the x-axis still couples exponentially (at least forN . 100).
Fig. 3.2 illustrates the coupling for two configurations of N = 100 particles.

Figure 3.2: Coupling of two hard-disk configurations of N = 100 spheres in a two-
dimensional periodic box, using the heat-bath algorithm along the x-axis. One of the
configurations is depicted at the left, with its constraint graph along x: disks that may
collide with each other are linked.
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4. General polytopes

A general d-dimensional polytope can be specified by a set of n inequalities Ax ≤ b in Rd,
where A is a n×dmatrix and b is a n-dimensional vector. In previous sections, we studied
coupling inside specific polytopes (namely, those obtained from configurations of 1d- or
2d- hard spheres), whose defining inequalities were very simple in our chosen reference
frame. We will now study the efficiency of the heat-bath algorithm in the context of
generic polytopes, and consider the coupling as well as the convergence properties.

4.1 Rotated polytope of one-d hard spheres

Let us first examine a specific case: the polytope corresponding to one-d hard spheres,
but described in a random orthonormal basis. In practice, we start from the defining
inequalities 0 ≤ x1 ≤ ... ≤ xN ≤ 1, where the dimension N of the polytope is the
number of hard spheres, and generate a random orthogonal matrix M (see [6] ex. 1.15,
p. 78). The new coordinates x′ are given by x = Mx′, so the polytope is described by
(AM)x′ ≤ b in the new frame.

Depending on the coordinate system, we obtain a coupling which can be as quick as heat-
bath coupling, or lose its exponential feature and show chaotic behavior. For instance,
let us consider the three-dimensional case: if we rotate the frame so that the polytope no
longer has edges along the axes (see Fig. 4.1), the mean coupling time (taken over runs
with random initial configurations inside the polytope) can be multiplied by a factor of
15. The autocorrelation time also increases, but in a less striking way: for d ≤ 5, it can
be multiplied by a factor up to 3 depending on the coordinate system.

For N ≥ 4, coupling do not always occur in our cutoff-time of ncut = 106 iterations. In
Table 4.1, we give averages of the real coupling time nc (using b = 10−10) taken over
configurations that did couple before ncut. Hence, the coupling time is all the more
underestimated that the proportion of “non-coupling” runs is high. We see that the
coupling time explodes with the dimension N when using a random orthonormal basis:
the efficiency of the heat-bath algorithm for coupling inside the polytope of one-d hard
spheres (Chapter 2) stems from a coordinate system which is well-fitted to the inequalities
defining the polytope.

12



Figure 4.1: Coupling of two configurations inside the 3d-polytope of one-dimensional
hard spheres. Left : In the natural coordinates, nc ' 165. Vertices are labelled by the
corresponding configuration of three particles in the interval [0, 1]. Right : In a rotated
frame, nc ' 2000.

4.2 Random polytopes

We now build random polytopes in R by generating random inequalities, choosing the
global sign of the coefficients of each inequality such that the origin lies inside the poly-
tope. Coupling inside random polytopes yields results similar to those obtained previ-
ously, using a inadequate coordinate system for polytopes of one-d hard spheres. As
before, the coupling behavior is almost always chaotic for polytopes with d ≥ 5.

N nc standard basis nc (random orthonormal bases) no coupling in 106 steps
2 47 ×2 0%
3 165 ×3.3 0%
4 383 > ×35 1%
5 729 � ×170 30%

Table 4.1: Coupling times nc inside the polytope of one-d particles, using the standard
coordinates or averaging over random orthonormal frames. The averages are taken over
configurations which coupled in less than 106 iterations; hence, they may be underesti-
mated.
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5. Addendum: the article of D. Randall and P. Winkler

After this work was completed, we sent it for advice to the renowned mathematician P.
Diaconis. He informed us that an article concerning the heat-bath algorithm for one-
dimensional hard spheres [9] had been published in 2005, proving that the mixing time
scales as N3 logN with the number N of spheres. This article had escaped our notice,
since it is not referenced in Web of Science, and can be found only on the webpage of
the authors. We spotted a few inconsistencies, which we corrected and communicated
to the authors; however, they do not invalidate the main conclusions. In the following,
we relate the key points of the demonstration, which completes the study undertaken in
Chapter 2.

The mathematical definition of the mixing time of a Markov chain X, whose stationary
distribution is σ, is given by the minimum number t of steps such that the total variation
distance

‖X(t)− σ‖ = max
A
|P (X(t) ∈ A)− P (σ ∈ A)|

between X(t) and σ is less than 1/4, for any initial state of X.

The first part of the proof shows that the mixing time of the Markov chain described in
Section 2.1 is O(N3 logN), using a coupling argument. Randall and Winkler consider
the chain 1 z(t) = 1̂(t)− 0̂(t), where the chains 1̂(t) and 0̂(t) are given by the evolution
of the extremal configurations 1̂ and 0̂, respectively. We will write z for z(t) and z′ for
z(t+ 1).

The hard wall boundary conditions (see Section 2.1) read z0(t) = zN+1(t) = 0 ∀t; they
will play an important part below. The other key point is what we called the “convexity
property” in Section 2.3.4: if sphere k is chosen at time t, then 〈z′k〉 = (zk−1 + zk+1)/2.
Averaging over all choices of k, this gives E[z′k] = N−1

N zk + 1
N (zk−1 + zk+1)/2.

Now, define

f(z) =
N∑
k=1

sin
( kπ

N + 1

)
zk . (5.1)

Using the two above properties, and the fact that 2 sin(a+ b) + sin(a− b) = 2 sin a cos b,

1In Section 2.3, the chain zk was denoted by εk.
2This justifies the choice of function f . We also use that sin

(
0

N+1

)
= sin

(
(N+1)π
N+1

)
= 0.
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we can rewrite E[f(z′)] as a function of f(z):

E[f(z′)] =
N∑
k=1

sin
( kπ

N + 1

)(N − 1

N
zk +

1

N

zk−1 + zk+1

2

)

=
N∑
k=1

[
N − 1

N
sin
( kπ

N + 1

)
+

1

2N

(
sin
((k + 1)π

N + 1

)
+ sin

((k − 1)π

N + 1

))]
zk

=
N∑
k=1

[
N − 1

N
sin
( kπ

N + 1

)
+

1

N
cos
( π

N + 1

)
sin
( kπ

N + 1

)]
zk

so that
E[f(z′)] = (1− γN )f(z) (5.2)

where γN = 1
N

(
1− cos π

N+1

)
.

Eq. (5.2) indicates that in average the function f decreases exponentially with the number
of steps, with characteristic time τN = −1/ log(1− γN ). This general formula coincides
with the coupling times we obtained for N = 2, ..., 7 in Section 2.3.2, using the transfer
matrix method. It also agrees with the result we found for N = 2 in Section 2.3.1,
where we studied the decreasing with time of the average of |max zk|. The method used
by Randall and Winkler is the same, but the function f they use is more adapted to
the purpose, allowing them to find a formula valid for all N . More generally, functions
with trigonometric weights like f can be used to prove mixing times for a wide class of
problems [10].

In order to prove coupling in O(N3 logN) steps, the authors consider two phases of the
coupling. In the first phase, of duration t1 ∼ N3 logN steps, the spheres are moved
according to the heat-bath algorithm, as explained in Fig. 2.2. This ensures that 0̂(t)
and 1̂(t) become close: zk < 1.1 N−4 (for N large enough) with probability at least 0.8
for all k. The second phase of the coupling is shorter, of duration t2 ∼ N(logN)2, and
leads to exact coupling with probability almost 1. Hence, with probability almost 0.8,
exact coupling takes place after ∼ N3 logN steps. Since the coupling time is necessarily
larger than the mixing time, this proves the upper bound.

Randall and Winkler conclude the proof by showing that the mixing time is Ω(N3 logN).
In order to prove this, they exhibit an event A such that |P (X(t) ∈ A)−P (σ ∈ A)| > 1/4
at t3 ∼ N3 logN . The event they consider is A = [f(2x(t3)− 1) > 0]. For the stationary
chain σ, it is obvious that P (σ ∈ A) = 1/2. On the other hand, using the chain 1̂(t),
it can be shown that P (1̂(t3) ∈ A) > 3/4. Thus, ‖X(t3) − σ‖ > 1/4, proving that the
chain has not mixed at time t3.
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6. Conclusion and outlook

The aim of the present study was to apply the heat-bath algorithm—well-known in
the context of the Ising model—to hard spheres configurations, and evaluate its coupling
time. The coupling time provides an upper bound for the mixing time, which is the crucial
property of a Markov chain Monte Carlo algorithm. The main difficulty is that the phase
space is now continuous, so that configurations can only “couple” approximately.

In one dimension, where a partial order can be defined as in the Ising model, we found
that the heat-bath algorithm couples exponentially. Following an argument based on
combinatorics, we evaluated the coupling time for N = 2 spheres. It would be interesting
to know if this method can be generalized to any value of N . Using transfer matrices, we
were also able to give the coupling times for N = 2, ..., 7 spheres. It is remarkable that our
results coincide with those obtained by Randall and Winkler [9], given the discretization
we used in order to define a transfer matrix. Besides, the results we found do not depend
on the discretization step—something we have yet to understand. This work thus calls
for further research, aiming to explain why the transfer matrix method leads to exact
results.

In two dimensions, the half-order is lost—rendering an exact analysis arduous—, but our
numerical results are encouraging: coupling is still exponential on individual runs when
N . 100, for any density of hard disks. However, the scaling of the coupling time with
N remains an open question. For two-dimensional hard spheres, it is known [11] that
another algorithm (the “labelled displacement algorithm”) induces rapid coupling for all
N (τcoup/N ∼ a logN + b) up to a critical density ηc ' 0.13. It remains to be seen
whether the heat-bath algorithm can do better.

Since the problem of hard-sphere sampling is related to sampling inside special polytopes,
we investigated the efficiency of the heat-bath algorithm for more general polytopes: poly-
topes obtained by rotation of a one-d hard-sphere polytope, or random polytopes. In both
cases, the coupling time increases drastically, indicating that the favorable properties of
the heat-bath algorithm do not extend to generic polytopes.

A byproduct of this study lies in its didactic value: it can be used in teaching to illustrate
in a simple way the notions of partial order, coupling, and rapid mixing in a continuous
space.
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