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In lecture 04 (Phase equilibria and �rst-order phase transitions), we studied the basic van-der-

Walls (mean-�eld) theory of the liquid-gas transition. However, time was short, and we did not

explore the rigorous conditions for phase equilibria, neither the �beyond van-der-Waals� aspects

that are of greatest importance for the analysis of �nite systems. This is what we will concentrate

on in this homework session.

I. VAN-DER-WAALS THEORY

A. Preliminaries

Remember the three ingredients of van der Waals (1873) theory:

a and b Two parameters modify the ideal gas law PV = NRT : a (related to the attractive part

of the interparticle potential, and leading to a negative system energy) and b (related to the

volume each atom occupies, and leading to a reduced entropy per particle).

Phase equilibrium Phase equilibrium is expressed through three conditions, namely T1 = T2

(thermal equilibrium), P1 = P2 (mechanical equilibrium), and µ1 = µ2 (equilibrium of parti-

cle �ows).

Thermodynamic inequalities : The thermodynamic inequality ∂P/∂V < 0 expresses the con-

dition that the compressibility of any gas or liquid is �nite.

Of course, since 1873, many things have happened, and all the above principles have found ex-

ceptions. One of these exceptions will be studied in Section III: We will explicitly construct an

equation of state with a positive ∂P/∂V > 0, for �nite number of particles. This equation of state,

however, is qualitatively correct, and still extremely useful today.
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B. Van der Waals equation of state in reduced variables

Remember the van der Waals equation of state (treated in Lecture 04):(
p+

3

v2

)(
v − 1

3

)
=

8t

3
(1)

with v = V/Vc, p = P/Pc, and t = T/Tc, where Vc, Tc, Pc are the volume, the temperature and

the pressure at the critical point. Note that eq. (1), the law of corresponding states, is an early

illustration of universality in statistical physics, as it predicts identical phase behavior for any gas

of atoms or molecules, under suitable rescaling of the thermodynamic variables.

Recap of how eq. (1) is derived:

The Van der Waals equation for a gas reads(
p+

aN2

V 2

)
(V −Nb) = NRT

De�ning the molar volumes as v = V/N , we can rewrite it as(
p+

a

v2

)
(v − b) = RT

This is equivalent to

v3 −
(
b+

RT

p

)
v2 +

a

p
− ab

p
= 0

We have thus that, for certain values of p and T , there are three real solutions for v . We can

de�ne the critical quantities pc and Tc as those values for the pressure and the temperature

such that the molar volume v has three coincident solutions. We will denote this solution with

vc . This means that we can write

v3 −
(
b+

RTc
pc

)
v2 +

a

pc
− ab

pc
= (v − vc)3

Developing this relation we can �nd

vc = 3b , pc =
a

27b2
, Tc =

8a

27bR

It is convenient to de�ne the reduced variables

vr =
v

vc
, pr =

v

vc
, Tc =

T

Tc

The Van der Waals equation can now be rewritten as(
pr +

3

v2r

)(
vr −

1

3

)
=

8

3
Tr
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This last expression is an example of universality. In fact it is invariant in form for any

gas, since the parameters a and b do not appear explicitly. In other words, for any gas it is

possible to make a rescaling of v, p and T such that this relation holds.

C. Van der Waals equation of state

Write a program to plot the van der Waals equation of state (p as a function of v) for several

values of the reduced temperature. For your convenience, this program is made available on the

website (see van_der_Waals.py), and the plot is shown in Fig. 1. Notice that not all of this plot

shows physical points.

FIG. 1: Van der Waals equation of state, as it comes out of the provided program. Not all of this plot shows

physical points.

In the �gure (that you create yourself) identify the critical point (and state the two conditions

that de�ne it). Furthermore identify the spinodal points (and also state their de�ning condition)

(sketch OK, but you may also modify the program). State in particular why the critical point is

de�ned by two de�nitions on p(v).

We can derive the explicit expression of pr in terms of vr and Tr . We will thus obtain

pr =
8Tr

3vr − 1
− 3

v2r

which show that pr is uniquely determined once �xed vr and Tr. The same does not hold for

vr. Indeed, �xed pr and Tr, vr can have one or three real roots. As we have stated before, for
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T = Tc and p = pc, v has three coincident roots. This is the case vr = 1, pr = 1, Tr = 1.

The case of three roots for vr is possible when, �xed Tr, pr is initially a decreasing function

of vr, then become increasing and then again decreasing. Since in classical thermodynamics

the pressure must decrease when the volume is growing, we will say that the portion of the

isothermal where ∂pr/∂vr > 0 is unphysical (i.e. cannot be described by the Van der Waals

equation). This leads to �nd a line (called spinodal) locus of points such that ∂pr/∂vr = 0.

In particular, the critical point, where the three roots are coincident, is the limit when the

two spinodal points on the isothermal coincide. This means that it can be de�ned by the two

conditions 
(
∂pr
∂vr

)
Tr

= 0(
∂2pr
∂v2r

)
Tr

= 0

We have thus two independent conditions which have to be added to the Van der Waals

equation. The fact of having three independent equations, describing three variables, means

that there are no further degree of freedom. This is why we can speak of a single critical point.

We can explicitly �nd an expression for the spinodal line from the condition ∂pr/∂vr = 0 at

�xed Tr . We will have

1

v3r
=

4Tr
3vr − 1

and writing Tr as a function of vr and pr (from Van der Waals equation) we get

pr =
3

v3r

(
2
vr − 1/3

vr
− 1

)
It is easy to check that the critical point (vr = 1, pr = 1, Tr = 1) lies on this line in a

stationary point of pr, as expected. The curve of spinodal points is shown in Fig. 2

D. Coexisting phases - Maxwell construction

As discussed in Lecture 04, coexisting phases are characterized through equal pressures, equal

temperatures and equal chemical potentials. To illustrate this point, let us discuss the van der

Walls equation of state at temperature t = 0.75. Performing minimal modi�cations of prog.

van_der_Waals.py, you will now show that the coexisting phases are at volume v1 = 0.4896 and

v2 = 5.643, at the coexistence pressure pcoex = 0.28246. The intermediate crossing volume with
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FIG. 2: This plot shows some isothermals, obtained from the Van der Waals equation, in the plan (vr , pr

). Nine di�erent values of Tr have been plotted, from Tr = 0.7 to 1.1 with a step of 0.05. The values of pr

increase as Tr grows at �xed vr. The dashed line represents the spinodal line (obtained analytically). The

critical point has been stressed.

the coexistence pressure satis�es vx = 1.281 (We precomputed these values for you using a slightly

more complicated program that you will not need to write yourself).

1. Volume integration

Show explicitly, through trivial numerical integration along v, from v1 to vx and from vx to v2,

that ∫ vx

v1

dv [p(v)− pcoex] = −
∫ v2

vx

dv [p(v)− pcoex] . (2)

(sketch how you you compute these integrals). Interprete this in geometrical terms in the van der

Waals equation of state that you generate for t = 0.75

2. Maxwell construction

Equivalently, you may integrate along the curve p(v) from the pressure p(v1) (point 1) to the

p(vx) (point x) and further on from p(vx) up to p(v2) (point 2).∫ x

1
dpv = −

∫ 2

x
dpv (3)
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(notice that the discretized di�erential dp in eq. (3) is ∆p = p(v + dv) − p(v)) (sketch how you

compute these integrals). Also explain why this socalled �Maxwell construction� establishes the

equality of the chemical potentials at v1 and v2.

A trivial way of doing numerical integral is divided the region (for example, [v1, vx]) into small

pieces. The length of each of them is the step size of the numerical integral ∆v. De�ne

vi = v1 + i∆v.The integral is approximately ∆v
∑

i pr(vi). There are better methods of doing

numerical integral, but their implementation is more complicated. However, if possible, one

should always use existing packages to do the numerical integral.
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FIG. 3: The shadowed regions have identical area, which indicates µ1 = µ2

The equality indicated by eq. (2) means the shadowed regions in Fig. 3 have identical area.

Equivalently, this relation can be expressed by another equation, which is exactly eq. (3). This

equation also indicates µ1 = µ2. The reasoning starts from the Gibbs-Duhem relation, which

writes

Ndµ = SdT + V dp

During the phase transition, Tr is identical for the whole system and is �xed in the current

discussion, thus,

dµ = vdp ∝ vrdpr
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eq. (3) can also be written as ∫ 2

1
dpv = 0

which means

µ2 − µ1 = 0

In conclusion, µ1 = µ2 imposed a constraint on the area shown in Fig. 3, which is related to

pcoex. Thus, with the condition T1 = T2, p1 = p2, and µ1 = µ2, the unique value of coexisting

pressure could be found.

3. Double tangent - Free energy

The Maxwell construction provides only one view on the equilibrium of phases. The other one

comes from the study of the free energy. Use your earlier program to plot the van-der-Waals free

energy f(v) (de�ned by p = − − df/dv) from the curve p(v). There is no need to compute the

absolute value with great precision, but the relative values between some value below v1 to some

value beyond v2 should be OK. How can you connect the points f(v1) and f(v2)? Show that the

interpolating line (with a variable 0 < x < 1 expressing the concentration of phase 2) allows to mix

phases 1 and 2. Express the mixture in terms of x, f1 and f2.

The free energy is de�ned as

F = E − TS

Thus,

dF = −SdT − PdV

For �xed T , dF = −pdV . In the unit system used in the previous questions (vc = pc = Tc =

1), molar free energy has following expression

fr(vr) = fr(v0)−
∫ vr

v0

prdvr

where fr(v0) can be treated as a constant (which depends only on Tr). Using the expression

of reduced Van der Waals equation

fr(vr) = − 3

vr
− 8Tr

3
ln(vr − 1/3) + c(Tr)
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During the phase transition, the pressure between v1 and v2 is connected by a horizontal line

pr = pcoex. Thus, the free energy between v1 and v2 is connected by a straight line, which

starts at (v1, fr(v1)) and ends at (v2, fr(v2)). And since pr(v1) = pr(v2) = pcoex, the straight

line in between is the double tangent line of the free energy curve. The free energy is plotted

in Fig. 4 The free energy of a mixture of phase 1 and phase 2 can be also expressed as
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Free energy (between v1 and v2)

FIG. 4: Free energy of the system.

f(x) = xf2 + (1− x)f1 (4)

where

x =
vr − v1
v2 − v1

Let the fraction of the matter in phase 1(2) be r1(2). r1 + r2 = 1 and vr can be expressed as

vr = v1r1 + v2r2

then

x =
v1r1 + v2r2 − v1

v2 − v1
= r2

Thus, x is the fraction of matter in phase 2. Thus, the expression eq. (4) is consist with the

fact that the free energy is proportional to the system size.
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II. COMPARISON OF THE VAN DER WAALS THEORY WITH THE EQUATION OF

STATE OF WATER

Van der Waals theory in reduced variables is called the �law of corresponding states� as it

(seemingly) applies to any liquid-gas system. As mentioned, it is an early example of universality

in statistical physics.

Try to apply it to water, whose critical point is at 647K and 22.064MPa, while its boiling point

at normal pressure is at 373.15K and 101.325kPa. The Maxwell construction at t = 0.577 gives

v1 = 0.426 and v2 = 20.5307884385, with p = 0.069064. Compare the ratios of the pressure (easy)

and of the volumes (use Wikipedia)!

We will now try to apply the Van der Waals equation to the phase transition between liquid and

vapor in water. The critical point of water is at Tc ∼ 647K and pc ∼ 22.046 × 106Pa.

Furthermore from experimental data we know that the critical molar volume is vc ∼ 5.6 ×

105m3/mol. (Datum taken from http://www.kayelaby.npl.co.uk/chemistry/3_5/3_5.html)

We can immediately note that these three values are not consistent. In fact, since Tc =

8a/27bR, pc = a/27b2 and vc = 3b, it is easy to check that it must holds

pcvc =
8

3
RTc

Taking the data we have we obtain pcvc ∼ 1.23×103J/mol, while 3RTc/8 ∼ 2.02J/mol. These

two values are clearly incompatible. Furthermore we know that the boiling point of water at

atmospherical pressure (pb = patm ∼ 101.325×103Pa) occurs at a temperature Tb = 373.15K.

Nevertheless, the results obtained applying the Maxwell construction are inconsistent. In fact

we have Tr = Tb/Tc ∼ 0.577, which brings to an expected coexistence reduced pressure pcoex ∼

0.069. The reduced pressure obtained by pb/pc is pr ∼ 0.0046, clearly inconsistent with the

previous result. A similar �nding occurs when comparing the volumes obtained from Maxwell

construction with the experimental data. From Maxwell construction we have that for the

boiling point at Tr = 0.577 the reduced volume varies during the transition between v1 ∼ 0.426

and v2 ∼ 20.53. From the p-v diagram experimentally obtained we can deduce that the molar

volume in the transition is limited by v
(m)
1 ∼ 1.8×105m3/mol and v

(m)
2 ∼ 5.48×104m3/mol).

(https://www.ohio.edu/mechanical/thermo/Intro/Chapt.1_6/Chapter2a.html) This leads to

v1 = v
(m)
1 /vc ∼ 0.32 and v2 = v

(m)
2 /vc ∼ 9.79, which are not compatible with the values

previously found. We can thus state that the transition from liquid water to vapor cannot be

well described by the Van der Waals equation.
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III. BEYOND-VAN-DER-WAALS THEORY

We will now work on the van der Waals equation of state for t = 0.85, where the coexistence

pressure is given by pcoexist = 0.50449, with v1 = 0.55336 and v2 = 3.1276. We now show an

example where the thermodynamic inequality ∂p/∂v|T < 0 is violated. Indeed, the view of a

mixture between phases 1 and 2 as a system with free energies f1 and f2, mixed in proportion, is

too simple to describe �nite systems, where the interface between the two phases provides a �nite

contribution to the system free energy per particle.

FIG. 5: The three possible scenarios for the mixture of phases 1 and 2 in a �nite box with periodic boundary

conditions: Bubble of 1 inside 2 (left), bubble of 2 inside 1 (center), stripes of 1 and 2. Note that periodic

boundary conditions are assumed both in x and in y direction.

Let us study this e�ect in a two-dimensional system with periodic boundary conditions in x and

in y. In fact, a mixture between phase 1 and phase 2 will look essentially like one of the three cases

shown in Fig. 5: Either an approximately spherical bubble of phase 1 inside phase 2, or a bubble of

phase 2 inside phase 1 or a stripe of phase 1 and a stripe of phase 2 (we suppose periodic boundary

conditions in x and in y).

A. Finite system vs in�nite-volume van-der-Waals theory

Explain why the interface is not considered in the in�nite-volume van-der-Waals theory, but

why it should be taken into account in a �nite system.

The free energy of the system and the free energy of the interface have di�erent scaling with respect

to the system size. For simplicity, we assume that the following discussion takes place in a 2D

system. However, the following reasoning remains qualitatively valid for arbitrary dimensional

systems. Let L be the length scale of the system. Assuming the number of particles per unit
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area remains constant, the free energy of the system scales with respect to the number of

particles, i.e. the area of the system, which means the free energy of the system

F ∝ L2

Assuming the free energy of the interface is constant per unit length, the interface free energy

Fi ∝ L

and

Fi/F ∝ 1/L

In a in�nitely large system, L → ∞ and Fi/F → 0. It also indicates that the molar free

energy of the interface fi ∝ Fi/L
2 → 0. Thus it is safe to ignore the free energy of the

interface. However, in a �nite system, Fi has to be taken into consideration.

B. Single bubble vs vinaigrette

Suppose the existence of an interface free energy per unit length γ. Show (in simple terms) why

the equilibrium con�guration can be a single bubble of one phase in a sea of the other phase (as in

Fig. 5), but not a con�guration with many bubbles (of the same total volume), as in vinaigrette.

The con�gures which have less free energy are more probable. In other words, the system always

chooses the con�gurations which have least free energy. Assuming the amount of matter in

phase 2 is �xed and all the bubbles are round. Then the sum of the areas of the bubbles,

i.e.
∑Nbubble

i r2i , is constant. The number of bubbles should minimize the total length of the

surface, i.e.
∑Nbubble

i ri. Since all the ri is positive,(
Nbubble∑

i

ri

)2

≥
Nbubble∑

i

r2i

and the equality is achieved only if there is one bubble. Thus, the con�guration of one big

bubble has less free energy than the con�gurations of multiple small bubbles.
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C. Preliminaries of the free energy of a �nite system

Consider the following simple versions of the free energy for the three scenarios in Fig. 5, where

γ is the surface tension (surface free energy per unit length) between the two phases:

f2 in 1 = f1(1− x) + f2x+
2γ√
N

√
πv2x (5)

f1 in 2 = f1(1− x) + f2x+
2γ√
N

√
πv1(1− x) (6)

f|| = f1(1− x) + f2x+
2γ√
N

√
V

N
(7)

Two of these three graphs are plotted in Fig. 6, together with the integrated van-der-Waals equation

of state, in the vicinity of v1 = 0.55336, the point of the beginning two-phase region, for a value of

2γ√
N

= 0.04.

FIG. 6: Van der Waals free energy for the in�nite system at t = 0.85, compared to the free energies of the

bubble 2 in 1 and the stripe free energy. Note that v1 = 0.55336

Calculation of the free energies: Assuming the system is in a square box of volumn V . For f2in1, the

area of phase 2 is Nxv2. Thus, the length of the interface is 2
√
πNxv2. And the contribution

to molar free energy is 2γ√
N

√
πv2x. For f1in2, the same argument is still valid. For stripe, the

length of the interface becomes 2
√
V .
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D. Interpretation of a free-energy curve

Interprete each of the three curves in Fig. 6, and especially the behavior of f2 in 1 near v1: What

is the prediction for the pressure for f2 in 1? (NB: This pressure is called Laplace pressure).

As in the case of an in�nite system, between v1 and v2 , the Van der Waals equations will not hold.

Anyway, in the case of a �nite system the interface contribution must be taken into account.

In a neighborhood of v1 (for vr > v1 ) the free energy can be reasonably approximate by f2in1 .

In fact we will have the appearance of a bubble of component 2 in a sea of phase 1. Since the

interface contribution goes as
√
x, for x→ 0 it will lead to a divergence in the �rst derivative

of fr. This means that even if the free energy will still be continuous, the pressure will tend to

−∞ for vr = v1. There will thus be a neighborhood of v1 in which the pressure will be allowed

to be negative. Analogous considerations can be done for vr ∼ v2. In this case we will have a

bubble of phase 1 in a sea of component 2 and for vr = v2 the pressure will diverge to +∞.

During the transition from v1 to v2 we will expect an intermediate stage, in which we will

have stripes of the di�erent phases. We will thus have, for some central values of vr in the

interval (v1 , v2), the free energy approximated by f||. In our constructions the transitions

between f1in2, f2in1 and f||, thought keeping the continuity of fr, will bring discontinuities in

its �rst derivative, due to the jumps between bubble and stripes con�gurations. It is worth to

notice that all three the functions f1in2, f2in1 and f|| are concave in (v1, v2), so that in all

this interval we will have ∂p/∂v > 0. This result is thus allowed for �nite systems.

E. Minimization of the free energy

Without doing any calculation (only by inspection of Fig. 6), explain the sequence of phases as

we move from v1 to larger volumes. Sketch the free energy as a function of the reduced volume.

The free energy between v1 and v2 will be given by

fr(vr) = min (f1in2(vr), f2in1(vr), f||(vr))

At the v1, a bubble of phase 2 begin to form and the free energy of the system start to follow the

curve f2in1. At the intersection of f2in1 and f||, the bubble become a stripe and the free energy

of the system begin to follow curve f||. Out of the plot shown here, the curve f|| and f1in2

will intersect. The free energy will then follow the curve f1in2 until it reaches (v2, fr(v2)).
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F. Pressure in a �nite system

Without doing any calculation, again, sketch the pressure as a function of v throughout the

whole range shown in Fig. 6. Then explain (in simple terms) what happens if we go to larger

systems (N →∞ with N/V = const and constant surface tension γ).

The pressure can be evaluated as pr = ∂fr/∂vr along the isothermal. For a �nite system, pr(vr) is

sketched in the Fig. 7. As previously noticed, in a �nite system pr can be negative. Further-

more in the interval (v1, v2) we will have pr = ∂fr/∂vr > 0. If the system becomes in�nite,

the contribution due to the interfaces become negligible. Hence, the pressure keeps constant

during the transition and we obtain the results of Ex. 1.

FIG. 7: Pressure of a �nite system.


