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In lecture 10 (Kosterlitz-Thouless physics 1/2: The XY (planar rotor) model), we studied in

detail the basic topological excitations in this model, namely the vortices. These excitations exist

next to the spin waves which are responsible for the destruction of long-range order, as we saw,

in the lecture 10, in Wegner's solution of the harmonic model. Vortices and anti-vortices also

provides the theme for the present homework session. For simplicity, we will restrict ourselves to

zero temperature.

I. SIZE-DEPENDENCE OF THE VORTEX ENERGY

FIG. 1: No vortex (left) and single vortex (right) at zero temperature, in the 32× 32 and 8× 8 XY models

with open boundary conditions, respectively.

A. Zero-vortex con�guration

�Write� a computer program which generates a vortex-free con�guration in an L×L lattice with

open boundary conditions, relax the system to the ground state, and take this energy to be zero

(instead of writing the program yourself, simply generate such a con�guration from the program

vortex_pair.py made available on the website by putting both the vortex and anti-vortex to

in�nity). Make sure you understand how this program works.
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The zero-vortex con�guration is shown in Fig. 2. All of the spins point to an identical direction.
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FIG. 2: Zero-vortex con�guration when L = 16.

B. Single-vortex con�guration

Trivially modify the program vortex_pair.py to place a single vortex at the center of an L×L

lattice, and compute the local minimum of the energy. To do so, you may for example put the vortex

at the center, and the antivortex very far outside the lattice (for the initial con�guration). Describe

the con�guration you observe and explain why it is stable with respect to local �uctuations.

With vortex_pair.py, it is possible to plot the con�guration with a(n) single (anti)vortex. The

con�gurations may be found in Fig. 3 and Fig. 4. These con�guration satis�es∮
i
φ(i) − φ(i− 1) = ±2π (1)

where
∮
i means all the sites on a closed loop enclosing the centre of the (anti)vortex. These

sites are labelled by i, and neighboring sites have neighbouring indices. On the lattice, almost

every spin aligns with its neighbors. If introducing a local �uctuation, i.e. change the direction

of a single spin, the perturbed spin will �nally point into the direction its neighbours point to.

Thus, with the presence of an (anti)vortex, the local �uctuations will �nally disappear.
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FIG. 3: A vortex in an L = 16 system.
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FIG. 4: An antivortex in an L = 16 system.
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1. Vortex and core energy

The theory of Kosterlitz and Thouless assumes that the excitation energy of a single vortex can

be described by the formula

Evortex = πJR logL+ Ec (2)

(where we suppose a lattice spacing of 1). From your converged data for di�erent values of L,

extract the value of the renormalized sti�ness JR and of the core energy. Can you con�rm that

the core energy does not scale with the system size? By analyzing the con�gurations you obtain,

answer the following questions: Why is the energy of the vortex approximately a logarithm, in the

�rst place, and why is there a constant core-energy correction to the logarithm?

The dependence of the energy of (anti)vortex on the system size is shown in Fig. 5. In the semi-log
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FIG. 5: Total energy of the system when (anti)vortex is presented. The curves overlap with each other. The

numerical result supports the result given by analytic argument.

plot, the plotted relation is almost strictly linear. This means that the energy scales as log(L).

Fitting shows that the intersection in the semi-log plot is roughly 2, which means that a part

of the energy does not scale with the size of the system.

The energy of the vortex could be estimated in the following way. If a site is far from the

center of the vortex, the interaction between this site and its neighbors is of the order of
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cos(∆φ) ∼ (∆φ)2. With eq. (1) and the symmetry of the system, ∆φ ∼ 1/r, where r is the

distance between the site and the centre of the vortex. Thus, the total energy

Evortex ∼
∫ L

0
(1/r)22πrdr ∼ log(L)

However, when r ∼ 1 (Recall the distance between two neighbouring sites is set to 1. This is

also the cut-o� scale of this model), the approximations break down. At the centre of a vortex,

the con�guration would always be roughly the same, regardless of the size of the system or

the spins far from the centre. Thus, the contribution of these sites should be irrelevant to the

size of the system. And it is the constant core energy of the vortex.

II. DISTANCE-DEPENDENCE OF THE VORTEX�ANTIVORTEX PAIR ENERGY

One of the key aspects of the Kosterlitz-Thouless theory is the interaction between a vortex and

an antivortex, which is given by the famous formula:

Uij(rij) = −πJRqiqj log rij + 2Ec, (3)

where qi and qj are the charges of the vortex and the anti-vortex, respectively. Use the program

vortex_pair.py for a single system size, as for example L = 128 to compute the pair excitation

energy as a function of the distance (in lattice sites) of the vortex-antivortex pair. Can you con�rm

that the pair energy is logarithmic in the pair separation?

NB: At the boundary of the system, the spins are not constant. This makes it impossible to compute

the core energy. Don't worry about Ec.

The energy of vortex on the system size is shown in Fig. 6. In the semi-log plot, the curve shows

a �awed linear relation. The divergence between numerical analytic result has mainly two

origins. Firstly, when the vortex and anti-vortex almost overlap, their contributions will

cancel each other and the total energy will be close to 0. Thus, at small distances, the energy

of a vortex-antivortex pair grows rapidly. Besides, when the distance is too large, some sites,

which contributes to the total energy, will not be taken into account, since the size of the

system is �xed. Thus, at large distances, eq. (3) is also not expected to work in the current

problem. In practice, con�rming eq. (3) is more di�cult than con�rming eq. (2).
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FIG. 6: Total energy of the system when a vortex-antivortex pair is presented in the system (L = 128). For

distances shown in the plot, eq. (3) is roughly true.


