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Introduction

I. METHOD OF MOMENTS AND MAXIMUM LIKELIHOOD

Consider n independent samples X1, . . . , Xn drawn from a uniform distribution with bounds a and b, where a and
b are unknown parameters and a < b.

X1, . . . , Xn ∼ Uniform(a, b) (1)

1. Explain what a method-of-moments estimator is. For n samples X1, . . . , Xn and a probability distribution π

depending on k parameters (θ1, . . . , θk), the method-of-moments estimator is the value θ̂ such that the k lowest

moments αj =
∫
xjπ(x, θ)dx agree with the sample moments α̂j =

∑n
i=1X

j
i . This is a system of k equations

with k unknowns. The method of moments is not optimal, and sometimes the moments of the distribution do
not exist, although the sample moments always exist. But the method of moments is easy to use.

2. Find the method-of-moments estimator for a and b. We need to solve

1

b− a

∫ b

a

xdx = α̂1
1

b− a

∫ b

a

x2dx = α̂2 (2)

Therefore we have (a+b)/2 = α̂1 and 1
3 (b3−a3)/(b−a) = 1

3 (a2+ab+b2) = α̂2, one finds b = α̂1+
√

3
√
α̂2 − α̂1

2

and a = α̂1 −
√

3
√
α̂2 − α̂1

2.

3. Explain the essence of maximum-likelihood estimation, and discuss the difference between a likelihood and a
probability. Using the same definitions as above, the likelihood function is defined as the product over the
probabilities G(θ) =

∏n
i=1 π(Xi, θ), and the maximum likelihood estimator is the value of the parameters θ that

maximizes this value, as a function of the data.

4. Find the maximum-likelihood estimator â and b̂. Because of the normalization (b− a), the maximum likelihood
estimator is largest if the interval (b− a) is smallest. Therefore, b = max(Xi) and a = min(Xi).

II. SPINS IN AN ALTERNATING MAGNETIC FIELD

Consider N spins in an alternating magnetic field

H = µh

N∑
i=1

(1 + 2(−1)i)si (3)

with si = ±. Note that there are no interactions between different spins.

1. What is the partition function of this system?

Remember that the sum over spins of a factorized function of the spins is the product of each sum, i.e. for any
function f we have

∑
s1

∑
s2

. . .
∑
sN

 N∏
j=1

f(sj)

 =

N∏
j=1

∑
sj

f(sj)

 (4)

The partition function can then be written by separating odd and even sites as

Z =

(∑
si=±

e−3βµhsi

)N/2(∑
si=±

eβµhsi

)N/2
= (4 cosh(3βµh) cosh(βµh))

N/2
(5)
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2. Find the free energy of this system at temperature T . Then

F = −N
2
β−1 (log (2 cosh 3βµh) + log (2 coshβµh)) (6)

3. What is the magnetization of each spin? Magnetization on is given on even sites by

〈si〉 =

(∑
si=± se

−3βµhsi
)(∑

si=± e
−3βµHsi

) = tanh(3βµh) (7)

and on odd sites by

〈si〉 =

(∑
si=± se

βµhsi
)(∑

si=± e
βµHsi

) = − tanh(βµh) (8)

4. Does this model have a phase transition? No, the model is in 1D and its transfer matrix is finite dimensional
and does not contain any zeroes.

III. THE 3-STATE POTTS MODEL IN 1D

The Potts model is a generalization of the Ising model. Rather than having only two possible values as in the
Ising case, spins in the Potts model take one of p values (that we take to be 1, . . . , p). We consider the case where
p = 3. The three-state Potts model for a 1D chain of N spins with periodic boundary conditions has the following
Hamiltonian:

HPBC = −J
N∑
i=1

δsi,si+1
, (9)

where δsi,si+1
is the Kronecker delta: it is equal to 1 when si = si+1 and zero otherwise, and the spin sN+1 is the

same as s1.

1. Write down the transfer matrix for this model.

T =

e
J 1 1

1 eJ 1

1 1 eJ


where β has been incorporated into J(T ).

2. Express the partition function for finite N in terms of the transfer matrix (+ explanation).

Z =
∑
{si}

eJ
∑N

i=1 δsi,si+1 = Tr[TN ] (10)

3. How would you go about computing the partition function in the limit N →∞? (Don’t do the calculation, just
explain how it is done and why).

Z = λN0 + λN1 + λN2

where λi are the three eigenvalues of T. In the limit N →∞, it suffices to keep the largest eigenvalue λ0:

Z ≈ λN0

.
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4. Consider now the case of open boundary conditions, with the hamiltonian given by

Hopen = −J
N−1∑
i=1

δsi,si+1 . (11)

(a) Express the partition function of the Potts model of N spins in terms of the transfer matrix for the case
of special boundary conditions s1 = 1, sN = 1.

Z = ~AtTN−1 ~A (12)

with

~At = (1, 0, 0) (13)

in other words, the (1, 1) element of the transfer matrix taken to the power N − 1. For N = 2, this is easy
to check as there is only one configuration, so that Z2 = exp (J). Note that there are only N − 1 terms in
the hamiltonian of eq. (??).

(b) Express the partition function of the Potts model of N spins in terms of the transfer matrix for the case
of open boundary conditions, where both s1 and sN can take on all three values.

Z = ~AtTN−1 ~A (14)

with

~At = (1, 1, 1) (15)

in other words, the sum over all the elements of the transfer matrix taken to the power N − 1. For N = 2,
this is easy to check as there are 9 configuration, three of them with weight exp (J) and six of them with
weight 1. This agrees with the sum over all the terms of T = TN−1 for N = 2.

IV. CLUSTER EXPANSION FOR AN INTERACTING GAS

Consider a gas of N particles in a one-dimensional box of size L (with density N/L = ρ fixed) with Hamiltonian

H =

N∑
i=1

p2i +

N∑
i<j,=1

U(qi − qj) (16)

with the interparticle potential given by

U(q) = 0 if q > a (17)

U(q) = u0 if q ≤ a (18)

We want to compute the free energy as an expansion in u0 up to orders u20 (we neglect terms of order un0 with
n > 2). Consider the partition function

Z =

 N∏
j=1

∫ L

0

dqj

∫ +∞

−∞
dpj

 N∏
i=1

e−βp
2
i

∏
i<j

e−βU(qi−qj) = Z0Q (19)

with

Q = L−N

 N∏
j=1

∫ L

0

dqj

∏
i<j

e−βU(qi−qj) (20)

and Z0 the partition function of the free gas (with u0 = 0). Write the free energy of the non-interacting gas as
F0 = −β−1 logZ0.
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1. Write down the partition function of the free Gas F0 = −β−1 logZ0

F0 = −β−1N log

(
L

∫
dpe−βp

2

)
= −β−1N log(

√
π/βL) (21)

2. Expand Q up to the order u20 and compute the free energy F = −β−1 logZ0 − β−1 logQ. You should find

F = F0 − β−1N (corrections ) (22)

with the corrections depending on β, ρ, a and clearly u0 and u20.
In order to expand Q write e−βU(qi−qj) = 1 + fi,j , then we have

Q = 1+
∑
i<j

L−2
∫
dqidqj

(
e−βU(qi−qj) − 1

)
+
∑
i<j

∑
k<l

L−4
∫
dqidqjdqkdql

(
e−βU(qk−ql) − 1

)(
e−βU(qi−qj) − 1

)
+. . .

(23)

In the first term expand
(
e−βU(qi−qj) − 1

)
= −βu0 + (βu0)

2

2 when qj ∈ [qi − a, qi + a]. Then the first term gives

∑
i<j

L−2
∫ L

0

dqi

∫ qi+a

qi−a
dqj

(
e−βU(qi−qj) − 1

)
=
N − 1

2

N

L
(2a)

(
−βu0 +

(βu0)2

2

)
(24)

For the second term we need to distinguish between the cases where j = k and where j 6= k. The first cases
produces

∑
i<j<l

L−3
∫
dqidqjdql

(
e−βU(qi−qj) − 1

)(
e−βU(qj−ql) − 1

)
=
N

3!

(
N

L

)2

(2aβu0)2 +O(1/N) (25)

where we used that
∑
i<j<l = N(N − 1)(N − 2)/3! ∼ N3/3!. The other contributions with j 6= k produce

disconnected diagrams (whose number grows with N4). Remember that disconnected diagram do not contribute
when we take the log of Z (linked cluster theorem). Therefore we can write the Free energy as

F = F0 − β−1 log

[
1 +N

(
(2aρ)

2

(
−βu0 +

(βu0)2

2

)
+ ρ2

(2aβu0)2

6
+O(u30)

)]
(26)

Expanding the log as log(1 + x) = x+ . . .

F = F0 − β−1N
[(

(2aρ)

2

(
−βu0 +

(βu0)2

2

)
+ ρ2

(2aβu0)2

6
+O(u30)

)]
(27)

Notice that disconnected diagram would have contributed with corrections of order N2 to the free energy, which
is indeed not physical (free energy has to be an extensive function of N).


