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I. EXERCISE (EASY): CLAPEYRON’S EQUATION

The Landau tricritical point of a certain substance in which solid, liquid and gas phases coexist has temper-
ature T ∗ and pressure P ∗.

The Clausius–Clapeyron equation relates the slope of the coexistence curve for phases α and β and the latent
heat λαβ = T (sα − sβ) where s is entropy per unit mass:

dPαβ
dT

=
λαβ

T (vα − vβ)
(1)

where v is specific volume. When T is close to T ∗ the latent heat can be considered almost constant and the
specific volume of the solid state vS and of the liquid phase vL are also constant. Moreover we have vS � vG(T )
with vG(T ) the specific volume of the gas phase.

1. Find an approximate expression for the function PSL(T ) for the coexistence liquid-solid on the plane
(P, T ), close to the critical point

: Clapeyron’s equation for the curve of coexistence of liquid and solid is

dPSL
dT

=
λSL

(vL − vS)T
(2)

As λSL ∼ const. we can integrate over T and we find

PSL(T ) = P ∗ +
λSL

vL − vS
log(T/T ∗) (3)
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2. Find an approximate expression for the function PSG(T ) for the coexistence gas–solid on the plane (P, T ),
close to the critical point

: Clapeyron’s equation for the curve of coexistence of gas and solid is

dPSG
dT

=
λSG

(vS − vG)T
(4)

As vS � vG we can set

dPSG
dT

∼ −λSG
vGT

= −nλSG
VGT

(5)

where VG is the volume of the gas and n is the number of moles of the system. We can now use

VG
n
∼ RT/PSG(T ). (6)

Then the equation becomes

dPSG
dT

∼
(
λSG
R

)
PSG(T )

T 2
(7)

which we can integrate and obtain

PSG(T ) = P ∗e−α/T
∗
eα/T α =

(
λSG
R

)
(8)

II. EXERCISE (HARD): FIRST-ORDER PHASE TRANSITIONS IN LIQUID CRYSTALS

Source: R. A. Sauerwein and M. J. De Oliveira, J. of Chem. Phys. 144, 194904 (2016).

1. Lattice model for biaxial and uniaxial liquid crystals

Reminder: Liquid crystals are states of matter that can be thought of as something in between conven-
tional liquids and solid crystals. They can exhibit various phases, one of the most common being the
nematic phase. In nematics, the molecules tend to have the same alignment but their positions are
not correlated. Thus, their center of mass positions are randomly distributed as in a liquid, but still
maintain a long-range directional order.

The molecules are generally three-dimensional objects, often elongated in one direction. If there is
a preferred direction for one of the axis (most commonly, the major one), the nematic is said to be
uniaxial. If there is a secondary preferred direction that is perpendicular to the other one, such a
nematic is called biaxial. At sufficiently high temperature, thermal fluctuations are able to destroy
the ordering of the nematic phase, and the system reaches a conventional isotropic liquid phase.

The model: Although we emphasize that there is no positional order (i.e., underlying lattice structure)
in liquid crystals, we start with a simple lattice model in order to describe the phase transitions in
nematics. In particular, we consider a regular lattice where, at each site, there is a parallelepiped-
shaped molecule. We assume that the molecules can take only the 6 orientations shown in Fig. 1.
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FIG. 1. Left: The six possible orientations of a molecule. Right: The matrix representation of the orientations.

FIG. 2. Sketch of the phase diagram in the variables h (cf. (17)) and Θ = 12kT
Jγr2(h2+3)

, where γ is the coordination

number. The phases are isotropic (I) uniaxial nematic (N±), and biaxial nematic (B).

A rod-like nematic phase occurs when the major axes are mostly parallel to each other whereas the
other two axes point in arbitrary directions. A disc-like nematic phase occurs when the minor axes
are mostly parallel to each other whereas the other two axes point in arbitrary direction. A biaxial
phase takes place when both the major axes are mostly parallel to each other, and the minor axes
are mostly parallel to each other. In this case, same can be said about the third axis as well.
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The system is described by the Hamiltonian

H = −ε
∑
(i,j)

Tr[ΩiΩj ] , (9)

where the sum is over nearest neighbor pairs, Ωi ∈ {W1, . . . ,W6} are the diagonal matrices shown in
fig. 1 (for the moment, you can interpret a, b, and c as the lengths in the various directions).

(a) Show that, without loss of generality, the matrices Wi can be chosen to be traceless, i.e. a+b+c = 0.

: Define

α = Tr
[
Ωi
]

so that (Ωi − α/3) is traceless.

H = −ε
∑
(i,j)

Tr
[
(Ωi − α/3)(Ωj − α/3)

]
+ const

(b) Within the mean-field approximation, neglect the fluctuations, i.e. use the following approximation:
(x−〈x〉)(y−〈y〉)→ 0. Define Qµ = 〈Ωiµµ〉 and write down an effective mean-field Hamiltonian linear

in Ωi. The coordination number of the lattice is γ.

:

(x− 〈x〉)(y − 〈y〉) ≈ 0

xy ≈ 〈x〉y + x〈y〉 − 〈x〉〈y〉

ΩiΩj ≈ Q(Ωi + Ωj)−Q2

H = −εγ

[∑
i

Tr(QΩi)− N

2
Tr(Q2)

]

(c) Within mean field, calculate the free energy and write down the system of equations satisfied by the
diagonal elements of Q. The total number of molecules is N , and you can leave the equations in
matrix form.

:

Z =
∑
{Ω}

e−βH = e−
N
2 βTr(Q2)

(
6∑
s=1

eβTr(QWs)

)N

Free energy per molecule f = −β−1 logZ:, β = εγ/T

f = − 1

T

(
−β

2
Tr(Q2) + ln

[
6∑
s=1

eβTr(QWs)

])
=
εγ

2
(Q2

1 +Q2
2 +Q2

3)− T ln

[
6∑
s=1

eβTr(QWs)

]



5

Q is the expectation value of Ω, which you can find using the partition function

Q =

∑6
s=1Wse

βTr(QWs)∑6
s=1 e

βTr(QWs)

therefore, using

ζ1 = eβ(aQ1+bQ2+cQ3) ζ2 = eβ(bQ1+aQ2+cQ3) (10)

ζ3 = eβ(bQ1+cQ2+aQ3) ζ4 = eβ(cQ1+bQ2+aQ3) (11)

ζ5 = eβ(cQ1+aQ2+bQ3) ζ6 = eβ(aQ1+cQ2+bQ3) (12)

ζ =

6∑
i=1

ζi (13)

we have

Q1 =
1

ζ
(aζ1 + bζ2 + bζ3 + cζ4 + cζ5 + aζ6) (14)

Q2 =
1

ζ
(bζ1 + aζ2 + cζ3 + bζ4 + aζ5 + cζ6) (15)

Q3 =
1

ζ
(aζ1 + cζ2 + aζ3 + aζ4 + bζ5 + bζ6) (16)

(d) Use the following parametrization

Q =

− q+η2 0 0
0 − q−η2 0
0 0 q

 W1 =

− r6 (h− 3) 0 0
0 − r6 (h+ 3) 0
0 0 r

3h

 . (17)

Identify the phases of matter parametrized by q, η.

: q = η = 0→ isotropic
q 6= 0, η = 0→ uniaxial nematic (q > 0: rod-like, q < 0 disk-like)
q 6= 0, η 6= 0→ biaxial nematic

(e) Write down the free energy in the uniaxial (rod-like and disk-like) nematic phases. Identify (i.e.,
write down the equation for) the line of the phase transition from the isotropic phase to the nematic
phase. What can be an order parameter for the phase transition? Is it a first-order or a continuous
transition (is there a jump in the order parameter)?

: in the nemathic phase η = 0 so Q2
1 +Q2

2 +Q2
3 = 3/2q2

f =
3εγ

4
q2 − 1

T
log 2(e3βaq/2 + e3βbq/2 + e3βcq/2) (18)

with

q =
ae3βaq/2 + be3βbq/2 + ce3βcq/2

e3βaq/2 + e3βbq/2 + e3βcq/2
(19)
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On the other hand in the isotropic regime the free energy is

f0 = −β−1 log 6 (20)

The transition line is when

f0 =
3εγ

4
q2 − β−1 log 2(e3βaq/2 + e3βbq/2 + e3βcq/2) (21)

At the transition line the order parameter q jumps from 0 to the value in (19).


