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1 Introduction

The following report is a summary of the work done during the internship in the group of
Werner Krauth at the ENS Paris. The so-called factorized Metropolis filter has recently
shown to be of great use in Monte Carlo simulation of the interaction between soft disks
in two dimensions. [1] [2]
The goal of the internship was to familiarize myself with new techniques in Monte Carlo
simulations used in the algorithm developed by the group of Werner Krauth and to test
the applicability of the algorithm to a spin system.
The system to which the algorithm was applied is the two dimensional XY model. The
system displays a phase transition, a point at which local Markov Chain algorithms
often have difficulties in producing independent samples. To test the performance of
the algorithm the speed with which it produces independent samples was measured and
compared to two other algorithms used in Monte Carlo Simulations.
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2 The 2D XY Model

The 2𝐷 XY model describes an ensemble of two-component spins of unit length that
are placed on the grid of a two-dimensional lattice whose interaction is invariant under
a global rotation. Each spin 𝑗 is defined by an angle 𝜙𭑗, ⃗𝑆𭑗 = (𝑐𝑜𝑠(𝜙𭑗), 𝑠𝑖𝑛(𝜙𭑗)) The
spins interaction is given by the following Hamiltonian:

ℋ = −𝐽 �
<𭑖,𭑗>

⃗𝑆𭑖
⃗𝑆𭑗 = −𝐽 �

<𭑖,𭑗>
𝑐𝑜𝑠(𝜙𭑖 − 𝜙𭑗) (2.1)

In this report only the case of 𝐽 > 0 is considered, called the ferromagnetic XY model.
The ferromagnetic XY model does not possess any spontaneous ordering at any given
temperature. This is because the continuous spins can align in waves such that neigh-
boring spins don’t differ much at nearly no energy cost. However the nonexistence
of spontaneous ordering does not imply the absence of a phase transition. The model
undergoes a so-called Kosterlitz-Thouless transition at a temperature 𝑇𭐾𭑇. [3] The tran-
sition manifests in the unbinding of pairs of so called vortices of spins. Spin vortices are
configurations in the spin system where spins along a closed path 𝒞 make a multiple of
2𝜋 rotation, i.e.

∫
𭒞

∇⃗𝜙( ⃗𝑥)𝑑 ⃗𝑠 = 𝑛 2𝜋 (2.2)

for 𝑛 ∈ ℤ.
Below the transition temperature vortices with positive and negative 𝑛 are bound in
pairs. This way there is local order in the system. Above the transition temperature
these pairs unbind, free vortices can exist and local order is destroyed.
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2 The 2D XY Model

Figure 2.1: Two equilibrium configurations of a 200x200 square lattice. The spins direc-
tions are displayed in color. Left: configuration below the transition temperature. Right:
above critical temperature. One can clearly see that local order is destroyed above 𭑇𭐾𭑇. The
configurations were created with the algorithm described below.

2.1 Magnetic susceptibility 𝜒

The observable of the XY model examined in this report is the magnetic susceptibility
𝜒 which is defined via:

𝜒 = |�⃗�2|
𝑁

(2.3)

where 𝑁 is the number of spins and �⃗� = ∑
𭑖

⃗𝑆𭑖 the sum of all spins. Above the KT
temperature there is no order in the system which means that the expectation value
of |�⃗�|2 is close to zero. The distribution of 𝜒 due to fluctuations around the mean
value is a very narrow peak around zero. Below the critical temperature however the
system is locally ordered and the magnetic susceptibility not only gains a finite value
but also the distribution becomes very broad. For the simulation of this system with
local Monte Carlo methods this poses the problem of critical slowing down, as will be
explained below. So in order to test the speed of a local algorithm on the XY system
this observable depicts a good measurement device.
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3 Markov Chain Monte Carlo
Simulations

3.1 Monte Carlo Simulations

The present chapter is based on Ref. [4]. The Monte Carlo simulation method is
introduced and current algorithms used to simulate the XY model are presented. The
Monte Carlo method is a statistical method to calculate integrals by evaluating random
positions (in configuration space) that follow a chosen distribution. This method is
very powerful in statistical physics since in order to calculate partition functions and
expectation values one often has to evaluate high dimensional integrals of the type:

𝒵 = �
{𭜎}

𝑒−𭛽𭐸(𭜎) (3.1)

where 𝛽 = 1
𭑘𭐵𭑇 the Boltzmann factor and the sum running over all possible configurations

𝜎 with energy 𝐸(𝜎). The goal of a Monte Carlo simulation is to sample a probability
distribution, in the following called 𝜋. In statistical physics this means sampling many
different states of a statistical system, distributed according to the Boltzmann distribu-
tion imposed by the interaction between the elements of the system.

3.2 Markov Chain and Metropolis Filter

Since it is often not possible to generate these states directly (by drawing random num-
bers), an important tool in Monte Carlo is the so called Markov Chain Monte Carlo
(MCMC). Its idea is to start from a valid configuration and evolve the system by chang-
ing it only little at each step in time. In the limit of infinitely many little changes, the
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3 Markov Chain Monte Carlo Simulations

ensemble of the visited configurations together forms the desired distribution again.
The recipe describing how to evolve the system such that it samples the desired distri-
bution is an algorithm. An MCMC algorithm is the set of probabilities that tells its user
how to move in configuration space depending on the state the system is in.

{𝑝(𝛼 → 𝛽)} = {probability to move from state α to β} (3.2)

Finding an algorithm now means finding a set of probabilities which will result in the
desired distribution.
With the use of Markov Chain methods, problems arise: Since the application of the
algorithm evolves the state of the system from one to another, the produced samples are
not independent. One only accesses the underlying probability distribution in the limit
of long running times. Furthermore, the state one starts the simulation with might not
be from of the equilibrium distribution of the system, so one has to wait for a certain
amount of steps until the algorithm has converged to equilibrium until one can start
sampling.

Of course the probabilities have to obey certain conditions in order for the Markov Chain
to converge to the stationary distribution. A necessary condition is the so called global
balance condition. Once the system has reached its stationary distribution the algorithm
should not leave it again. This is manifested in the stationarity condition:

𝑑
𝑑𝑡

𝜋𭛼 = �
𭛽

{𝜋𭛽𝑝(𝛽 → 𝛼) − 𝜋𭛼𝑝(𝛼 → 𝛽)} = 0 (3.3)

where 𝜋𭛼 is the stationary probability to be in state 𝛼. The flow of probability out of one
configuration 𝛼 needs to level the flow into the configuration. The other two conditions
are ergodicity (each configuration of the system can be reached from each other one in
a finite number of steps) and aperiodicity (there is no state which the algorithm maps
to itself after a finite number of steps bigger than one.)
For a physical system, the stationary distribution 𝜋(𝛼) is given by the states’ Boltzmann
weights:

𝜋(𝛼) = 1
𝒵

𝑒−𭛽𭐸(𭛼) (3.4)
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3 Markov Chain Monte Carlo Simulations

with 𝛽 = 1
𭑘𭐵𭑇 .

A very simple algorithm to sample this distribution was proposed by Metropolis et al.
[5]: the acceptance probability is given by

𝑝Met(𝛼 → 𝛽) = 𝑚𝑖𝑛(1, 𝜋(𝛽)
𝜋(𝛼)

) (3.5)

This algorithm applied to the XY model takes the following form:

1. Start form a valid state of the system 𝛼

2. sample a proposed move 𝛿𝜑 ∈ [−𝜉, 𝜉]

3. Pick a random spin 𝜙𭑖 of the system and apply the move 𝜙𭑖 → 𝜙𭑖 + 𝛿𝜑, thereby
sending the system from state 𝛼 to state 𝛾

4. accept the move with the probability 𝑝𭑎𭑐𭑐(𝛼 → 𝛾) = 𝑚𝑖𝑛(1, 𝑒−𭛽(𭐸𭛾−𭐸𭛼))

5. if the move is accepted then add 𝛾 to the ensemble of samples and repeat the
algorithm with state 𝛾 as initial configuration, in case of refusal add 𝛼 and repeat
with

By simply plugging in the Metropolis acceptance probabilities together with the Boltz-
mann weights in (3.3) one can see that this algorithm not only satisfies global balance,
but that every term in the sum vanishes by itself. This is called ’’detailed balance’’.
Setting up a working MCMC algorithm by using the Metropolis filter will therefore for
sure lead to the correct equilibrium as long as the two other conditions for convergence
are also fulfilled. However it has a downside to it: The goal of an MCMC simulation is
to produce as many independent samples as possible. Since the detailed balance keeps
all probability flows between all states in equilibrium, the probability of changing from
𝛼 → 𝛽 is just the same as in the next move to go from 𝛽 → 𝛼. So the detailed balance
causes no quick movement in phase-space, it is rather a random walker, the algorithm
behaves ’’diffusive’’.

3.3 The factorized Metropolis filter

The Metropolis filter is not the only set of probabilities that fulfill the global balance
condition. The standard Metropolis filter can be changed in a non-intuitive way. In the
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3 Markov Chain Monte Carlo Simulations

case of a system of N interacting particles the acceptance probability is given by:

𝑝Met(𝛼 → 𝛾) = 𝑚𝑖𝑛(1, 𝑒
−𭛽 ∑

𭑖,𭑗
Δ𭐸𭑖𭑗) = 𝑚𝑖𝑛(1, ∏

𭑖,𭑗
𝑒−𭛽Δ𭐸𭑖𭑗) (3.6)

where the sum/product runs over all pairs and the Δ𝐸𭑖𭑗 = 𝐸𭑖𭑗(𝛾) − 𝐸𭑖𭑗(𝛼) are the
energy changes between each pair interaction. The so called factorized Metropolis filter
now uses the acceptance probability

𝑝fac(𝛼 → 𝛾) = ∏
𭑖,𭑗

𝑚𝑖𝑛(1, 𝑒−𭛽Δ𭐸𭑖𭑗) = 𝑒
−𭛽 ∑

𭑖,𭑗
𭑚𭑎𭑥(0,Δ𭐸𭑖𭑗)

(3.7)

These probabilities are not the same as before in Eq. (3.6). For N = 2 the acceptance
probabilities agree trivially but for 𝑁 > 2 in general 𝑝fac ≤ 𝑝Met. Nonetheless the
factorized filter also respects detailed balance. This can be seen by applying

𝜋(𝛼)
𝜋(𝛾)

= 𝑒
𭛽 ∑

𭑖,𭑗
Δ𭐸𭑖𭑗 = 𝑒

𭛽 ∑
𭑖,𭑗

(𭑚𭑎𭑥(0,Δ𭐸𭑖𭑗)−𭑚𭑎𭑥(0,−Δ𭐸𭑖𭑗))
(3.8)

to equation (3.7) and finding :

𝜋(𝛼)
𝜋(𝛾)

𝑝fac(𝛼 → 𝛾) = 𝑝fac(𝛾 → 𝛼) (3.9)

This means that if used in an algorithm, these acceptance probabilities will also sam-
ple the correct distribution even though the rejection probability is higher. But simply
replacing 𝑝Met → 𝑝fac in the algorithm scheme described above does not give an advan-
tage, it rather slows down the algorithm since rejection means no movement in phase
space at all.

However the big advantage is, that this filter takes each pair interaction into account
individually instead of considering their sum. Connected to another technique called
lifting in Markov chain, this filter allows to construct rejection free algorithms discussed
in the next chapter.
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3 Markov Chain Monte Carlo Simulations

3.4 Autocorrelation functions

An important tool in order to judge the independence of the data is the so called au-
tocorrelation function. Monte Carlo simulations produce an array of samples on which
observables can be evaluated. It is defined for an observable of a dataset via:

𝐶𭒪(𝑑𝑡) = ⟨𝒪(0)𝒪(𝑑𝑡)⟩ − ⟨𝒪⟩2

⟨𝒪2⟩ − ⟨𝒪⟩2 (3.10)

This function is normalized to 1 for 𝑑𝑡 = 0 and smaller than one for 𝑑𝑡 ≥ 1. If all the
samples in an array are independent, then by definition the term

⟨𝒪(0)𝒪(𝑑𝑡)⟩ = ⟨𝒪(0)⟩⟨𝒪(𝑑𝑡)⟩ = ⟨𝒪⟩2 (3.11)

factorizes and the autocorrelator drops to zero for 𝑑𝑡 ≥ 1. If the data is not independent
then one expects to see an exponential decay. The rapidity of this decay is what defines
the time after which two samples can be regarded as independent from each other.
Of course there are several observables for each model. The slowest one is defining the
speed of the algorithm.

3.5 The Wolff Cluster Algorithm

The currently fastest algorithm to simulate spin systems with nearest neighbor inter-
action is called the Wolff Cluster algorithm [6]. As mentioned before the local MCMC
methods take very long to produce independent samples in the temperature regime of
the phase transition. This is because the distribution of the observable 𝜒 becomes very
broad. The local MCMC however only moves one single spin at a time and the change in
𝜒 is very little. As it fulfills detailed balance the inverse move has the same probability
so it takes very long for the algorithm to explore the whole distribution of 𝜒 and so
the produced samples are all correlated on a long timescale. This is known as critical
slowing down.

The Wolff algorithm tackles this problem: instead of moving one spin at a time it
constructs clusters of spins that are all moved collectively. This way there can be much
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3 Markov Chain Monte Carlo Simulations

larger changes in 𝜒 with one cluster movement and the algorithm produces independent
samples much faster than the local MCMC algorithm. The algorithm takes a random
vector ⃗𝑟 from the unit circle, constructs a cluster of spins starting from a random point
on the grid. After the construction is finished it flips the component of the cluster spins
which is parallel to ⃗𝑟 across the plane rectangular to ⃗𝑟.
A cluster 𝐶 is constructed and flipped in the following way (set 𝐽 = 1):

1. Choose a random vector form the unit sphere ⃗𝑟. Pick a random site 𝑖 on the lattice
as a starting point for the cluster

2. Flip the spin ⃗𝑆𭑖 → ⃗𝑆𭑖 − 2( ⃗𝑆𭑖 ⋅ ⃗𝑟) ⃗𝑟, mark spin 𝑖 as flipped and add site 𝑖 to 𝐶

3. Visit all the sites 𝑗 connecting site 𝑖 and add activate the bond < 𝑖, 𝑗 > with
probability 𝑝( ⃗𝑆𭑖, ⃗𝑆𭑗) = 1 − 𝑒𝑥𝑝[𝑚𝑖𝑛{0, 2𝛽( ⃗𝑆𭑖 ⋅ ⃗𝑟)( ⃗𝑆𭑗 ⋅ ⃗𝑟)}]. If it is accepted flip

⃗𝑆𭑗 → ⃗𝑆𭑗 − 2( ⃗𝑆𭑗 ⋅ ⃗𝑟) ⃗𝑟, mark spin 𝑗 and add site 𝑗 to 𝐶.

4. Continue this procedure with each bond of newly added spins until no more un-
marked spin can be flipped and the process stops.

This algorithm respects detailed balance. Yet it makes big steps in the distribution of
𝜒 and is not affected by critical slowdown. One sample of this algorithm is taken after
every cluster flip.
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4 Lifting in Markov chains

The the following the concept of lifting in a Markov chain is introduced with the help of
the example of a single particle in a 1-dimensional box with hard walls followed by the
application to two interacting XY spins. The source of the algorithms presented in the
following chapter is Ref. [1].

4.1 Particle in 1 D box

Consider a particle in a one dimensional box with discretized positions 𝛼 = {Δ, 2Δ..., 𝐿Δ}
and hard walls. In order to sample a uniform distribution on this set of states the stan-
dard Metropolis algorithm would consist in sampling moves uniformly from the set
{−Δ, Δ}. A proposed move that keeps the particle in the box is accepted with proba-
bility 1, a move that would take the particle out of the box is rejected. It would fulfill
the detailed balance 𝜑𭛼→𭛼+Δ = 𝜑𭛼+Δ→𭛼 for all 𝛼 and converge to the stationary dis-
tribution.
Lifting in this example consists of duplicating every configuration by introducing a lifting
variable 𝑝: The states then obtain a second degree of freedom (𝛼) → (𝛼, 𝑝 = ±). The
weights of the new states in the stationary distribution are unaffected by this, only the
normalization changes: 𝜋((𝛼, ±)) = 𝜋(𝛼). The lifting variable now fixes the direction of
the next move, something which in regular MCMC would be sampled from an a priori
distribution. The only proposed moves then are:

(𝑖Δ, +) → ([𝑖 + 1]Δ, +)

(𝑖Δ, −) → ([𝑖 − 1]Δ, −)

11



4 Lifting in Markov chains

Clearly this algorithm does not respect detailed balance any more because

𝑝[(Δ, +) → ((2Δ, +)] ≠ 0 (4.1)

𝑝[(2Δ, +) → (Δ, +)] = 0 (4.2)

Now in case of a rejection in the physical variable 𝛼 instead of having no flow out of the
configuration, one changes the lifting variable and thereby introduces a flow between the
two duplicates:

(𝑖Δ, ±) → (𝑖Δ, ∓) (4.3)

The next proposed move will therefore go into the other direction. In this way it is
possible explore all L sites in 𝒪(𝐿) operations instead of the usual 𝒪(𝐿2) random walk
behavior and therefore increase the speed of the algorithm by breaking the detailed bal-
ance of the transition probabilities.

4.2 Two discrete XY spins

The same thing can be done for two XY spins. Consider two XY spins 0 and 1 which can
take only L discrete values, 𝜙 ∈ {0, 2𭜋

𭐿 ...2𭜋(𭐿−1)
𭐿 }. The two spins interact via a potential

that only depends on the difference in angle between the two. Each state is duplicated
into two:

(𝛼) → (𝛼; 𝑙) (4.4)

where 𝑙 ∈ {0, 1} is the lifting variable which defines which spin is proposed to move.
The lifting algorithm takes the following scheme:

1. Split each state of the XY system into two by introducing a lifting variable which
identifies one of the two spins as the moving one. .

2. Randomly initialize a valid state. This means one of the two spins is lifted.

3. Propose to move the lifted spin 𝜙lift by an amount 𝛿 = 2𭜋
𭐿 in a fixed direction (for

example counterclockwise): 𝜙lift → 𝜙lift + 𝛿

12



4 Lifting in Markov chains

4. Accept the move with the Metropolis algorithm probability 𝑝Met = 𝑚𝑖𝑛(1, 𝑒𝑥𝑝[−𝛽Δ𝐸 ])
with Δ𝐸 the energy difference Δ𝐸 = 𝐸after − 𝐸before before and after the move

5. If the move is refused don’t move the spin but instead change the lifting variable
to the other spin.

6. Back to step 3

The event of a rejected move is in the following also referred to as a collision, as the spin
fails to cross the potential barrier created by the other spin and ’’collides’’ with it.
Of course in order to converge to the stationary distribution one needs to fulfill the
global balance condition.

�
𭛽

𝜑(𝛽 → 𝛼) = �
𭛾

𝜑(𝛼 → 𝛾) (4.5)

β γ

α η

ε β

ϕ(
β
→
α)

ϕ(ε→
α) ϕ(

α
→
β)

ϕ(α→
γ)

ϕ(β→
η)

∆Φε=∆−δ

∆Φα=∆Φβ=∆ ∆Φγ=∆ +δ ∆Φη=∆−δ

Figure 4.1: The flows in the between different states of the system. The states are labeled
by greek letters, the red arrows represent the probability flows between them. The green spin
has the lift and the algorithm proposes to move it.

In Figure 4.1 the scheme of such a system is shown. Note that the spins only turn in
one direction, ergo the represented scheme are all possible in and outgoing flows for the
state 𝛼. The stationary flows are given by:

𝜑(𝛼 → 𝛾) = 𝜋(𝛼)𝑝acc(𝛼 → 𝛾) (4.6)
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4 Lifting in Markov chains

where 𝜋(𝛼) is the stationary probability to be in the state 𝛼 and 𝑝acc is the Metropolis
acceptance probability. The stationary probability is given by the state’s Boltzmann
weight. The states Boltzmann weights are given by:

𝜋(𝛼) = 𝑒−𭛽𭐸𭛼 = 𝑒−𭛽𭐸𭛽 = 𝜋(𝛽) (4.7)

𝜋(𝛾) = 𝑒−𭛽𭐸𭛾 (4.8)

𝜋(𝜖) = 𝑒−𭛽𭐸𭜖 (4.9)

𝜋(𝜂) = 𝑒−𭛽𭐸𭜂 (4.10)

The flow equations read:

𝜑𭑜𭑢𭑡 = 𝜋(𝛼)(𝑝acc(𝛼 → 𝛾) + 𝑝acc(𝛼 → 𝛽)) (4.11)

= 𝜋(𝛼)[𝑚𝑖𝑛(1, 𝑒−𭛽(𭐸𭛾−𭐸𭛼)) + 1 − 𝑚𝑖𝑛(1, 𝑒−𭛽(𭐸𭛾−𭐸𭛼)] (4.12)

= 𝜋(𝛼) (4.13)

𝜑𭑖𭑛 = 𝜋(𝜖)𝑝acc(𝜖 → 𝛼) + 𝜋(𝛽)𝑝acc(𝛽 → 𝛼) (4.14)

= 𝜋(𝜖) 𝑚𝑖𝑛(1, 𝑒−𭛽(𭐸𭛼−𭐸𭜖)) + 𝜋(𝛽)(1 − 𝑚𝑖𝑛(1, 𝑒−𭛽(𭐸𭜂−𭐸𭛽))) (4.15)

Now for the specific choice of a potential which only depends on Δ𝜑 = 𝜑1 − 𝜑2 one has
that 𝐸𭜂 = 𝐸𭜖. Recalling that 𝜋(𝛼) = 𝜋(𝛽) one finds that:

𝜑𭑖𭑛 − 𝜑𭑜𭑢𭑡 = 𝜋(𝜖) 𝑚𝑖𝑛(1, 𝑒−𭛽(𭐸𭛼−𭐸𭜖)) − 𝜋(𝛼) 𝑚𝑖𝑛(1, 𝑒−𭛽(𭐸𭜖−𭐸𭛼)) = 0 (4.16)

This means that the proposed algorithm respects global balance for each value of the
discretization 𝛿. As soon as one introduces an interaction which does not depend on the
distance between the two spins the assumption that the energy of state 𝜖 and 𝜂 are the
same does not hold any more and global balance is violated. Since the discretization 𝛿
is arbitrary it also holds for two continuous spins.

14



4 Lifting in Markov chains

4.3 𝑁-particle systems

The above application of the lifting algorithm to two XY spins (in the following called
spins) is generalized straight forward to N particle systems. The lifting variable is still
which spin is turning at the moment. Each configuration is characterized by the angles
of each XY spin to a fixed axis and a move turns only the lifted spin:

𝛼𭑖 = {𝜙1, ...𝜙𭑖, ...𝜙𭑁} → 𝛽𭑖 = {𝜙1, ...𝜙𭑖 + Δ, ...𝜙𭑁} (4.17)

However this algorithm does not respect global balance any more. This is because of
there might be configurations where it is unclear to which particle should be lifted. This
is shown in Figure 4.2

β3

β1

γ2

β2α2

Figure 4.2: The states are labeled by the configuration of the spins and by the lifting variable.
If 𭑝acc(𭛽2 → 𭛾2) ≠ 1 in case of a rejection of a move 𭛽2 → 𭛾2 it is not clear to which state
the system should be evolved . It is impossible to define flows that respect global balance in
this situation.

However this problem does not occur any more in the limit Δ → 0 is made. In the
continuous case there are no spins that are at the exact same position so global balance
is recovered. With the help of the factorized Metropolis filter it is possible to identify a
unique lifting partner.
For general two body interactions 𝐸𭑖𭑗(𝜙𭑖 − 𝜙𭑗) the energy change between the two
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4 Lifting in Markov chains

configurations 𝛼𭑖 → 𝛽𭑖 by an infinitesimal turning of spin 𝜙𭑖 by 𝑑𝜙𭑖 is:

𝑑𝐸 = �
𭑗≠𭑖

𝜕𝐸𭑖𭑗(𝜙𭑗 − 𝜙𭑖)
𝜕𝜙𭑖

𝑑𝜙𭑖 = �
𭑗≠𭑖

𝑑𝐸𭑖𭑗 (4.18)

By application of the factorized filter the move is rejected with probability

𝑝rej = 1 − 𝑝fac(𝛼𭑖 → 𝛽𭑖) = 1 − 𝑒𝑥𝑝(−𝛽 �
𭑗≠𭑖

𝑚𝑎𝑥[0, 𝑑𝐸𭑖𭑗]) = 𝛽 �
𭑗≠𭑖

𝑚𝑎𝑥[0, 𝑑𝐸𭑖𭑗] (4.19)

where in the last step nonlinear terms of the exponential vanish as the changes are
infinitesimal. This means pair interactions that lead to an energetically more favorable
state are not contributing to the rejection probability.
The lifting probabilities are then exactly chosen as the pairwise rejection probabilities:

𝑝lift(𝛼𭑖 → 𝛼𭑗) = 𝛽 𝑚𝑎𝑥[0, 𝑑𝐸𭑖𭑗] 𝑗 ≠ 𝑖 (4.20)

The algorithm now displaces the lifted spin by a sequence of infinitesimal moves which
lead to a finite turning of the spin until a lifting partner is identified which inherits the
lift and is the continued to be turned.
The lifting probabilities define an infinitesimal lifting algorithm. That this algorithm’s
flows obey global balance is demonstrated along the example displayed in figure 4.3.
The flows into the configuration 𝛾2 are given by two lifting flows and one infinitesimal
spin movement and amount to (note that 𝜋(𝛼) = 𝜋(𝛾), see caption 4.3):

𝜑lift(𝛾1 → 𝛾2) = 𝜋(𝛾) 𝛽 𝑚𝑎𝑥[0, 𝑑𝐸12] (4.21)

𝜑lift(𝛾3 → 𝛾2) = 𝜋(𝛾) 𝛽 𝑚𝑎𝑥[0, 𝑑𝐸32] (4.22)

𝜑move(𝛼2 → 𝛾2) = 𝜋(𝛼) 𝑝fac(𝛼2 → 𝛾2) (4.23)

= 𝜋(𝛼) 𝑒𝑥𝑝(−𝛽{𝑚𝑎𝑥[0, 𝑑𝐸12] + 𝑚𝑎𝑥[0, 𝑑𝐸32]}) (4.24)

= 𝜋(𝛾) (1 − 𝛽 𝑚𝑎𝑥[0, 𝑑𝐸12] − 𝛽 𝑚𝑎𝑥[0, 𝑑𝐸32]) (4.25)

Their sum amounts exactly to 𝜋(𝛾) which is the flow out of configuration 𝛾2.
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4 Lifting in Markov chains

γ3

γ1

α2

γ2

Figure 4.3: Infinitesimal flow between configurations. The central spin in state 𭛾2 is only
infinitesimally different from the central one in 𭛼2. This is however represented by a finite
difference in order to see it in the graphic. Since the spin is only infinitesimally different so is
the energy of the configurations. This means their Boltzmann weight agrees.
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4 Lifting in Markov chains

4.4 Rejection-free algorithms

To implement the infinitesimal algorithm, one does not use a extremely small but finite
discretization but constructs a rejection free algorithm. The methods described before
in Markov Chain Monte Carlo all relied on the principle: propose a move and accepted
or rejected it with a given probability defined by the algorithm.

∆E
pacc =exp(−β max[0,∆E])

Figure 4.4: A proposed particle move over a
potential barrier is accepted with the Metropo-
lis probability

There is an alternative approach [7].
That is to sample the number of moves
on can make until a rejection oc-
curs. In the infinitesimal XY case
this means by which finite amount
the algorithm can turn a spin un-
til a collision occurs, i.e. the lift-
ing variable has to be changed. In
this way no rejection ever occurs but
rather a continuum of states is cre-
ated.

To find the collision points consider a spin
as a particle in a one dimensional potential
created by another fixed spin. For simplic-

ity assume that in order to turn the spin it would have to cross a barrier of height Δ𝐸
as shown in figure 4.4.
So by turning the spin from the position Φ𭑜𭑙𭑑 to the position Φ𭑛𭑒𭑤 it would have to cross
several such barriers and the probability that no rejection (collision) occurs is given by:

𝑝no coll(Φold, Φnew) = ∏
𭑘

𝑒𝑥𝑝 ( − 𝛽 𝑚𝑎𝑥[0, Δ𝐸𭑘]) = 𝑒𝑥𝑝 ( − 𝛽 𝑚𝑎𝑥[0, �
𭑘

Δ𝐸𭑘])

(4.26)

where the sum/product runs over all crossed barriers. Taking the continuum limit and
using Δ𝐸 → 𭜕𭐸(Φ)

𭜕Φ 𝑑Φ, the probability that there is no collision after turning a spin by
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4 Lifting in Markov chains

a finite amount to the new position Φ is

𝑝no coll(Φ) = 𝑒𝑥𝑝 ( − 𝛽
Φ

∫
Φold

𝑚𝑎𝑥 [0, 𝜕𝐸(𝜙)
𝜕𝜙

]𝑑𝜙) (4.27)

So probability that a collision occurs only is collected whilst moving up in the potential
landscape, whilst constant or downwards movement does not lead to an increase of
collision-probability.
To sample this distribution, i.e. the collision points, one draws a random number form a
uniform distribution Υ ∈ (0, 1) and by this determines the amount of energy the particle
can move up in a potential via 𝐸* = − 1

𭛽 𝑙𝑜𝑔 Υ and then solves the equation

𝐸* =
Φ

∫
Φold

𝑚𝑎𝑥 [0, 𝜕𝐸(𝜙)
𝜕𝜙

]𝑑𝜙 (4.28)

for Φ, the upper integral bound.

−π −π
4 0 −π

2 π

∆Φ

-J

0

J

E

E ∗ =J∫
max [0, E

φ
]dφ

0

J

2J

E
| E

>
0

Figure 4.5: Example for solving (4.28) dis-
played graphically. The initial position is
marked by the blue particle and the final po-
sition in red. The green curve displays only the
part of the potential with positive derivative.
The particle only feels this part in order to de-
termine a collision.

The movement between two collisions is
called an event. The chain of all subse-
quent events is called the event chain. At
the end of each chain, the lifting variable
is resampled.
This usually means the final event must
be truncated, even if there has not been
the next collision yet. A parameter in the
algorithm is the length of this chain ℓ. A
small chain length ℓ means that the lifting
variable is changed often. For a ferromag-
netic XY model with only next neighbor
interaction, which will be used to test the
algorithm on, this means practically that
the algorithm turns spins in different re-
gions of the grid. If ℓ is very big, this
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4 Lifting in Markov chains

means that the algorithm travels slowly through the grid since the lifting variable can
only be given to one of the neighboring sites of the turning spin.
Very important is that the collision points do not sample the equilibrium distribution of
the system but only the points where the lifting variable is changed. Since the system
goes through a continuum of states one needs to take equidistant samples during the
simulation. For example, the end points of each event chain samples the equilibrium
distribution since one sample is taken after ℓ movement of the system.
An example for two ferromagnetic XY spins is displayed in figure 4.5.
The potential is given by 𝐸 = −𝐽 𝑐𝑜𝑠(ΔΦ). After the lift has been passed for the last
time, the spins had ΔΦ = −𭜋

2 . The randomly drawn energy was 𝐸* = 𝐽. Note that
the particle does not “gain“ energy by going downwards, it only feels the part of the
potential with positive derivative, displayed by the green curve in the figure. This means
the turned amount is 𭜋

4 (now it is at the minimum) plus the solution of the equation:

𝐸* = 𝐽 = −𝐽 𝑐𝑜𝑠(𝜙) + 𝐽 (4.29)

which is 𝜙 = 𭜋
2 . This means the spin with the lift is turned by 3

4𝜋.
The factorized Metropolis filter is able to identify a unique partner because if the turning
spin 𝑖 interacts with the other spins {𝑗} via the pair potential 𝐸𭑖𭑗 the probability that
no collision occurs is the product of the probabilities from equation (4.27) for each pair
potential 𝐸𭑖𭑗 and they are all independent. This means in order to obtain the collision
points for many interacting spins, one needs draw an admissable energy 𝐸*

𭑖𭑗 for each
pair, solves equation (4.28) for each of them for the upper integral bound. One then
determines the minimum of all the solutions, turns the spin 𝑖 by this amount and the
spin whose interaction produced the minimum solution inherits the lift. This allows to
generalize a lifting algorithm which works for two particles to an N particle system.

For two particles in the ferromagnetic XY model the distribution of ΔΦ can be plotted
and it follows:
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Figure 4.6: Cumulative Distribution for the angular difference ΔΦ of two ferromagnetic XY
spins simulated with the rejection free algorithm. One can see that the data follows the exact
solution perfectly.

𝑝(ΔΦ) = 1
𝒵

𝑒𭛽 𭐽 𭑐𭑜𭑠(ΔΦ) (4.30)

with 𝒵 = ∫2𭜋
0

𝑒𭛽 𭐽 𭑐𭑜𭑠(𭜓)𝑑𝜓 which can be evaluated numerically. In figure 4.6 the cumu-
lative distribution of the exact solution and the data for 𝛽 = 𝐽 = 1 is plotted. 𝑛 = 105

samples were taken. One can see that they agree perfectly and the maximal distance
Δ𭑚𭑎𭑥 ≤ 1√

𭑛 . This means the algorithm can be generalized to N particle systems. Also
for the N particle system the spins need only to be turned into one direction only.
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5 Simulation of the XY model

In the following chapter the results of the application of the rejection free event chain
algorithm to the two dimensional ferromagnetic XY model on a square lattice of length
𝐿 with periodic boundary conditions are presented. This means the number of particles
𝑁 = 𝐿2. The measurements were taken for 𝐽 = 1 at the critical temperature determined
by Hasenbusch 𝛽𭑐𭑟𭑖𭑡 = 1.1199 [8]. The system sizes were chosen as 𝐿 = {16, 32, 64}
To make the measurements for each local Markov Chain Monte Carlo (MCMC) simu-
lation 1 million data points were taken at a maximal step width of 𝛿 = 0.7𝜋. For the
Event Chain Monte Carlo (ECMC) one measurement of 𝜒 was taken every 100𝜋 of total
rotation in the system. For each system size different chain lengths ℓ were tested. This
means that the measurements were still taken after 100𝜋 but after ℓ the lifting variable
was resampled. For the system size 𝐿 = 16 𝑛 = 125000 data points were taken for each
chain length, for 𝐿 = 32 𝑛 = 250000 and for 𝐿 = 64 𝑛 = 350000 data points. The
cluster algorithms had 𝑛 = 75000 data points taken for 𝐿 ∈ 16, 64 and 𝑛 = 250000 for
𝐿 = 32.

5.1 Measurements of 𝜒

Since in the case of more than two particles it is not possible to calculate the exact an-
gular distribution of the system. If the algorithm produces the correct results was tested
on the observable 𝜒 and compared to the currently most exact simulations presented in
[8].
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5 Simulation of the XY model

L 𝜒ECMC 𝜒MCMC 𝜒Wolff 𝜒ref

16 132.83 ± 0.08 132.88 ± 0.30 132.81 ± 0.21 133.011 ± 0.009
32 452.10 ± 0.45 449.89 ± 1.1 452.11 ± 0.35 452.114 ± 0.031
64 1535.11 ± 3.5 1508.51 ± 12 1528.6 ± 4.0 1536.58 ± 0.11

Table 5.1: Measured magnetic susceptibilities.

One can see that the measurements all agree with each other and with the values obtained
by Hasenbusch. To see that the measurements have the same distribution and not only
the same mean value the cumulative distributions of the data is plotted in figure 5.1.
One can see clearly the data is all from the same distribution.
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Figure 5.1: Cumulative distribution of 𭜒. One can see that all the simulations follow the
same distribution. The different curves are from the MCMC simulation, the Cluster simulation
and several different chain lengths. The different chain lengths are given in units of 𭜋

5.2 Measurement of 𝜏𝜒

In order to compare the autocorrelation functions and the correlation times 𝜏𭜒 one needs
to find comparable units for one time step because all three algorithms work completely
different. The reference of time is the number of spins moves attempted by the ECMC
algorithm. For the ECMC this means one unit of time were the number of collision

23



5 Simulation of the XY model

points sampled in 100𝜋 movement. This is chosen as a time reference because the average
number of moves per fixed measurement length does not depend on the system size but
only on the temperature which is held constant for every system size. This is 𝑑𝑡 =
354 attempts. For the MCMC one measurement was taken every 𝑑𝑡 = 350 attempts. Of
course in the MCMC algorithm the parameter of the step size is directly responsible for
autocorrelation time. However there has been no optimization in this sector during the
measurements. The improvement would only be marginal.
The number of operations necessary for one cluster flip strongly depends on the system
size. So any measured correlation time for the cluster algorithm should be multiplied by
<cluster size>

354 . The function that was fitted in order to get the correlation time 𝜏𭜒 was:

𝐶(𝑑𝑡; 𝜏𭜒) = 𝑒− 𭑑𭑡
𭜏𭜒 (5.1)

For the different sizes the autocorrelation functions are plotted in figures 5.3, 5.2 and
5.4. The average cluster sizes were < 𝑐 >= 108 for 𝐿 = 16, < 𝑐 >= 367 for 𝐿 = 32 and
< 𝑐 >= 1236 for 𝐿 = 64.
From the plot one can see several things: first, the speed with which the algorithm
produces independent samples is strongly depending on the chain length. A frequent
change of lifting variables is less favorable. However there is a chain length above which
there is no further improvement. The second thing is that the correlation functions
show two different slopes and a knee appears. It is not clear yet if that behavior is due
to the lack of data and the correlation function is not computed correctly any more in
that regime of 𝑑𝑡 or that the algorithm possesses two time scales. However the plot of
the 𝐿 = 64 data the cluster algorithm shows the same kind of knee in the plot. This
autocorrelation function was computed on much less data than the ones on 𝐿 = 32.
This hints towards that the knee being an artifact of too little data. But even more
important is that the ECMC is able to be as fast or maybe even faster than the Wolff
Cluster algorithm if the knee is due to little amount of data.
A major factor in the application of the algorithm to spin systems is that the number of
particles with the lifted particle is fix and small. This makes the amount of calculations
necessary to find one collision point very little in comparison to systems where the lifted
particles is interacting with all 𝑁 − 1 other particles.
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Figure 5.2: Autocorrelation function for the susceptibility 𭜒 for 𭐿 = 32. The legend shows
the different chain lengths l in units of 𭜋.
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Figure 5.3: Autocorrelation function for the susceptibility 𭜒 for 𭐿 = 16. The legend shows
different chain lengths l in units of 𭜋.
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Figure 5.4: Autocorrelation function for the susceptibility 𭜒 for 𭐿 = 64. The legend shows
different chain lengths l in units of 𭜋.
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The obtained results were:

L 𝜏𭜒,𭐸𭐶𭑀𭐶 𝜏𭜒,𭑀𭐶𭑀𭐶 𝜏𭜒,𭑊𭑜𭑙𭑓𭑓

16 0.7 9.15 1.3
32 2.5 93 4.5
64 9.5 1150 22.7

Table 5.2: Measured correlation times corrected for cluster sizes.

These measured correlation times are only the ones which were measured for the fast
decay for small 𝑑𝑡.
To see the scaling of the algorithm with the system size in great detail more system
sizes with much more data to see the knee disappear would be needed. However from
these three points the algorithm scales like 𝑁0.95, which means linearly with the system
size. This is much better than for the local Monte Carlo algorithm who form these three
points scales like 𝑁1.7.

5.3 Concluding Remarks

The Event Chain Monte Carlo algorithm described in [1] can be applied to spin systems
with continuous degrees of freedom and pair interaction which only depend on the
angular distance between one pair of spins. The algorithm has the potential to be faster
than the current fastest algorithm, if there are no two time scales in the algorithm and
the curve in the plots is simply an artifact. To find the exact scaling with the system
size, simulations with bigger system sizes are needed. The algorithm can also be applied
to XY-spinglass systems with arbitrary pair coupling 𝐽𭑖𭑗 and there might also be the
possibility for a speed up with respect to the local Markov chain. A paper by the group
of W. Krauth about the algorithm is in the making.

I want to thank the members of the group for giving me the opportunity to work with
them and for their patience.
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