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(see Fig. 3.5). The normalized and mutually orthogonal sine functions
in eqn (3.20) have a periodicity 2L, not L, unlike the wave functions in
a box with periodic boundary conditions.

Using the plane waves in eqn (3.20) and their energies En = 1
2 (n�/L)2,

we find the following for the density matrix in the box:

ρbox,[0, L](x, x′, β)

=
2
L

∞∑
n=1
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)
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)
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L

)
. (3.21)

We can write the product of the two sine functions as
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n�

x

L

)
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)
=

1
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[
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)
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(
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)
− exp

(
−in�
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L

)]
. (3.22)

Using eqn (3.22) in eqn (3.21), and comparing the result with the formula
for the periodic density matrix in eqn (3.11), which is itself expressed in
terms of the free density matrix, we obtain

ρbox,[0, L](x, x′, β) = ρper,2L(x, x′, β) − ρper,2L(x,−x′, β)

=
∞∑

w=−∞

[
ρfree(x, x′ + 2wL, β) − ρfree(x,−x′ + 2wL, β)

]
. (3.23)

This intriguing sum over winding numbers is put together from terms
different from those of eqn (3.21). It is, however, equivalent, as we can
easily check in an example (see Fig. 3.6).
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Fig. 3.6 Probability of being at posi-
tion x for a free particle in a box with
walls (from eqn (3.21) or eqn (3.23),
with L = 5).

In conclusion, we have derived in this subsection the density matrix of
a free particle in a box either with periodic boundary conditions or with
walls. The calculations were done the hard way—explicit mathematics—
using the Poisson sum formula and the representation of products of
sine functions in terms of exponentials. The final formulas in eqns (3.18)
and (3.23) can also be derived more intuitively, using path integrals, and
they are more generally valid (see Subsection 3.3.3).

3.1.4 Density matrix in a rotating box

In Subsection 3.1.3, we determined the density matrix of a free quantum
particle in a box with periodic boundary conditions. We now discuss the
physical content of boundary conditions and the related counter-intuitive
behavior of a quantum system under slow rotations. Our discussion is
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a prerequisite for the treatment of superfluidity in quantum liquids (see
Subsection 4.2.6), but also for superconductivity in electronic systems,
a subject beyond the scope of this book.

...
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Fig. 3.7 A one-dimensional quantum system on a line of length L (left),
and rolled up into a slowly rotating ring (right).

Let us imagine for a moment a complicated quantum system, for ex-
ample a thin wire rolled up into a closed circle of circumference L, or
a circular tube filled with a quantum liquid, ideally 4He (see Fig. 3.7).
Both systems are described by wave functions with periodic boundary
conditions ψn(0) = ψn(L). More precisely, the wave functions in the lab
system for N conduction electrons or N helium atoms satisfy

ψlab
n (x1, . . . , xk + L, . . . , xN ) = ψlab

n (x1, . . . , xk, . . . , xN ). (3.24)

These boundary conditions for the wave functions in the laboratory
frame continue to hold if the ring rotates with velocity v, because a
quantum system—even if parts of it are moving—must be described ev-
erywhere by a single-valued wave function. The rotating system can
be described in the laboratory reference frame using wave functions
ψlab

n (x, t) and the time-dependent Hamiltonian H lab(t), which represents
the rotating crystal lattice or the rough surface of the tube enclosing the
liquid.

The rotating system is more conveniently described in the corotating
reference frame, using coordinates xrot rather than the laboratory coor-
dinates xlab (see Table 3.1). In this reference frame, the crystal lattice
or the container walls are stationary, so that the Hamiltonian Hrot is
time independent. For very slow rotations, we can furthermore neglect
centripetal forces and also magnetic fields generated by slowly moving
charges. This implies that the Hamiltonian Hrot (with coordinates xrot)
is the same as the laboratory Hamiltonian H lab at v = 0. However, we
shall see that the boundary conditions on the corotating wave functions
ψrot are nontrivial.

Table 3.1 Galilei transformation for a
quantum system. Erot, prot

n , and xrot

are defined in the moving reference
frame.

Reference frame
Lab. Rot.

xlab = xrot + vt xrot

plab
n = prot

n + mv prot
n

Elab
n = 1

2m

`
plab

n

´2
Erot

n = 1
2m

`
prot

n

´2 To discuss this point, we now switch back from the complicated quan-
tum systems to a free particle on a rotating ring, described by a Hamil-
tonian

Hrot = −1
2

∂2

(∂xrot)2
.

We shall go through the analysis of Hrot, but keep in mind that the very
distinction between rotating and laboratory frames is problematic for the
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noninteracting system, because of the missing contact with the crystal
lattice or the container boundaries. Strictly speaking, the distinction is
meaningful for a noninteracting system only because the wave functions
of the interacting system can be expanded in a plane-wave basis. In the
rotating system, plane waves can be written as

ψrot
n (xrot) = exp

(
iprotxrot

)
.

This same plane wave can also be written, at all times, in the laboratory
frame, where it must be periodic (see eqn (3.24)). The momentum of the
plane wave in the laboratory system is related to that of the rotating
system by the Galilei transform of Table 3.1.

plab
n =

2�
L

n =⇒ prot
n =

2�
L

n − mv (n = −∞, . . . ,∞). (3.25)

It follows from the Galilei transform of momenta and energies that the
partition function Zrot(β) in the rotating reference frame is

Zrot(β) =
∞∑

n=−∞
exp
[−βErot

n

]
=

∞∑
−∞

exp
[
−β

2
(−v + 2n�/L)2

]
.

In the rotating reference frame, each plane wave with momentum prot
n

contributes velocity prot
n /m. The mean velocity measured in the rotating

reference frame is

〈
vrot(β)

〉
=

1
mZrot(β)

∞∑
n=−∞

prot
n exp

(−βErot
n

)
, (3.26)

with energies and momenta given by eqn (3.25) that satisfy Erot
n =

(prot
n )2/(2m). In the limit of zero temperature, only the lowest-lying

state contributes to this rotating reference-frame particle velocity. The
momentum of this state is generally nonzero, because the lowest energy
state, the n = 0 state at very small rotation, Erot

0 , has nonzero momen-
tum (it corresponds to particle velocity −v). The particle velocity in the
laboratory frame is 〈

vlab
〉

=
〈
vrot
〉

+ v. (3.27)

At low temperature, this particle velocity differs from the velocity of the
ring (see Fig. 3.8).

The particle velocity in a ring rotating with velocity v will now be
obtained within the framework of density matrices, similarly to the way
we obtained the density matrix for a stationary ring, in Subsection 3.1.3.
Writing x for xrot (they are the same at time t = 0, and we do not have
to compare wave functions at different times),
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Fig. 3.8 Mean lab-frame velocity of a
particle in a one-dimensional ring (from
eqns (3.26) and (3.27) with L = m =
1).

ψrot
n (x) =

√
1
L

exp
(
iprot

n x
)

(n = −∞, . . . ,∞),

Erot
n =

(prot
n )2

2m
.


