Tutorial 5, Statistical Mechanics: Concepts and applications 2016/17 ICFP Master (first year)

Maurizio Fagotti, Olga Petrova, Werner Krauth *Tutorial exercises*

I. WORKSHEET: ISING MODEL IN $D \ge 2$ – THE PEIERLS ARGUMENT

[Source: R. Peierls, M. Born, Proceedings of the Cambridge Philosophical Society, 32, 477 (1936) C. Bonati, Eur. J. Phys. 35, 035002 (2014)]

1. Peierls argument for the Ising model in 2D

Reminder: Peierls contours are drawn via the following procedure:

- (a) draw a unit square on each site i with $\sigma_i = -1$
- (b) cancel the edges that appear twice

An example of the Peierls contour for a given spin configuration is shown below:

	+	+	+	+	+
+	_	-	-	-	+
+	+	_	+	_	+
+	+	_	_	_	+
+		+	_	+	+
+		+		+	

The model: Consider a classical Ising ferromagnet, defined for spins $\sigma \in \{+1, -1\}$:

$$E = -J\sum_{(i,j)} \sigma_i \sigma_j - h\sum_i \sigma_i , \qquad (1)$$

where J is assumed to be positive, and we set the applied magnetic field h to zero. We define the average magnetization per lattice site as

$$m = \frac{1}{N} \sum_{i} \sigma_{i} = \frac{N_{+} - N_{-}}{N} = 1 - 2\frac{N_{-}}{N}$$
 (2)

where N is the total number of spins and N_{\pm} is the number of ± 1 spins. In $D \geq 2$, this system undergoes a phase transition at the critical temperature T_c . In the paramagnetic phase $(T > T_c)$, the average magnetization in thermodynamic limit $\langle m \rangle$ vanishes, whereas in the ferromagnetic phase $(T < T_c)$ it does not. This non-vanishing value of $\langle m \rangle$ is generally ill-defined, so we use one of the possible ways to overcome this issue by imposing the following boundary condition:

$$\sigma_{i_b} = +1.$$

In this set of exercises, we will use the Peierls argument to show that $\langle N_- \rangle/N < 1/2 - \epsilon$ (for every N) in ferromagnetic phase, from which it follows that $\langle m \rangle > 0$.

- (a) Assume a finite $\sqrt{N} \times \sqrt{N}$ lattice. Label an arbitrary Peierls contour by γ_L^i , where L is the length of the contour (e.g., L=4 for a single closed square). Provide an upper bound for N_- in a given spin configuration in terms of the areas inside applicable Peierls contours.
 - **Hint:** You may find it useful to define a variable $X(\gamma_L^i)$ that is equal to 1 if γ_L^i occurs in the given spin configuration and zero otherwise.
- (b) Give an upper bound A(L) on the area inside a contour $A(\gamma_L^i)$ as a function of only the contour's length L.
- (c) The quantity we are interested in is the thermal average $\langle N_- \rangle$. Find an upper bound X(L) on $\langle X(\gamma_L^i) \rangle$.
- (d) Derive an upper bound on the number of closed paths of length L.
- (e) Use the quantities you calculated to write down an expression for $\langle N_- \rangle$, which will be proportional to a sum over contour lengths L. Simplify it. The final result should be of the form

$$\langle N_- \rangle \le N f_2(x)$$

where $x = 9e^{-4J\beta}$ and $f_2(x)$ is a continuous function of x. Explain the physical meaning of this result.

2. Peierls argument for the Ising model in 3D

The model: Consider a three dimensional cubic lattice with dimensions $N^{1/3} \times N^{1/3} \times N^{1/3}$. The Peierls contours of the two dimensional case now become surfaces, but their construction proceeds along the same lines as in the two dimensional case.

- (a) Label an arbitrary Peierls surface by γ_S^i , where S is the surface area measured in units of elementary squares. Provide an upper bound for N_- in a given spin configuration in terms of the volumes inside applicable Peierls surfaces.
- (b) Give an upper bound V(S) on the volume inside a surface $V(\gamma_S^i)$ as a function of only the surface area S.
- (c) Find an upper bound X(S) on $\langle X(\gamma_S^i) \rangle$.
- (d) Derive an upper bound on the number of closed surfaces of area S.
- (e) Use the quantities you calculated to write down an expression for $\langle N_- \rangle$, which will be proportional to a sum over surface areas S. The final result should be of the form

$$\langle N_{-} \rangle \leq N f_3(x)$$

where $x = 9e^{-4J\beta}$ and $f_3(x)$ is a continuous function of x.

- (f) Use the same reasoning to arrive at a similar result for the general $D \geq 3$ case.
- (g) Why cannot the Peierls argument be applied to the one dimensional Ising model?