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In lecture 04 (Phase equilibria and �rst-order phase transitions), we studied the basic van-der-

Walls (mean-�eld) theory of the liquid-gas transition. However, time was short, and we did not

explore the rigorous conditions for phase equilibria, neither the �beyond van-der-Waals� aspects

that are of greatest importance for the analysis of �nite systems. This is what we will concentrate

on in this homework session.

I. VAN-DER-WAALS THEORY

A. Preliminaries

Remember the three ingredients of van der Waals (1873) theory:

a and b Two parameters modify the ideal gas law PV = NRT : a (related to the attractive part

of the interparticle potential, and leading to a negative system energy) and b (related to the

volume each atom occupies, and leading to a reduced entropy per particle).

Phase equilibrium Phase equilibrium is expressed through three conditions, namely T1 = T2

(thermal equilibrium), P1 = P2 (mechanical equilibrium), and µ1 = µ2 (equilibrium of parti-

cle �ows).

Thermodynamic inequalities : The thermodynamic inequality ∂P/∂V < 0 expresses the con-

dition that the compressibility of any gas or liquid is �nite.

Of course, since 1873, many things have happened, and all the above principles have found ex-

ceptions. One of these exceptions will be studied in Section III: We will explicitly construct an

equation of state with a positive ∂P/∂V > 0, for �nite number of particles. This equation of state,

however, is qualitatively correct, and still extremely useful today.
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B. Van der Waals equation of state in reduced variables

Remember the van der Waals equation of state (treated in Lecture 04):(
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with v = V/Vc, p = P/Pc, and t = T/Tc, where Vc, Tc, Pc are the volume, the temperature and

the pressure at the critical point. Note that eq. (1), the law of corresponding states, is an early

illustration of universality in statistical physics, as it predicts identical phase behavior for any gas

of atoms or molecules, under suitable rescaling of the thermodynamic variables.

C. Van der Waals equation of state

Write a program to plot the van der Waals equation of state (p as a function of v) for several

values of the reduced temperature. For your convenience, this program is made available on the

website (see van_der_Waals.py), and the plot is shown in Fig. 1. Notice that not all of this plot

shows physical points.

FIG. 1: Van der Waals equation of state, as it comes out of the provided program. Not all of this plot shows

physical points.

In the �gure (that you create yourself) identify the critical point (and state the two conditions

that de�ne it). Furthermore identify the spinodal points (and also state their de�ning condition)

(sketch OK, but you may also modify the program). State in particular why the critical point is

de�ned by two de�nitions on p(v).
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D. Coexisting phases - Maxwell construction

As discussed in Lecture 04, coexisting phases are characterized through equal pressures, equal

temperatures and equal chemical potentials. To illustrate this point, let us discuss the van der

Walls equation of state at temperature t = 0.75. Performing minimal modi�cations of prog.

van_der_Waals.py, you will now show that the coexisting phases are at volume v1 = 0.4896 and

v2 = 5.643, at the coexistence pressure pcoex = 0.28246. The intermediate crossing volume with

the coexistence pressure satis�es vx = 1.281 (We precomputed these values for you using a slightly

more complicated program that you will not need to write yourself).

1. Volume integration

Show explicitly, through trivial numerical integration along v, from v1 to vx and from vx to v2,

that ∫ vx

v1

dv [p(v)− pcoex] = −
∫ v2

vx

dv [p(v)− pcoex] . (2)

(sketch how you you compute these integrals). Interprete this in geometrical terms in the van der

Waals equation of state that you generate for t = 0.75

2. Maxwell construction

Equivalently, you may integrate along the curve p(v) from the pressure p(v1) (point 1) to the

p(vx) (point x) and further on from p(vx) up to p(v2) (point 2).∫ x

1
dpv = −

∫ 2

x
dpv (3)

(notice that the discretized di�erential dp in eq. (3) is ∆p = p(v + dv) − p(v)) (sketch how you

compute these integrals). Also explain why this socalled �Maxwell construction� establishes the

equality of the chemical potentials at v1 and v2.

3. Double tangent - Free energy

The Maxwell construction provides only one view on the equilibrium of phases. The other one

comes from the study of the free energy. Use your earlier program to plot the van-der-Waals free

energy f(v) (de�ned by p = − − df/dv) from the curve p(v). There is no need to compute the
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absolute value with great precision, but the relative values between some value below v1 to some

value beyond v2 should be OK. How can you connect the points f(v1) and f(v2)? Show that the

interpolating line (with a variable 0 < x < 1 expressing the concentration of phase 2) allows to mix

phases 1 and 2. Express the mixture in terms of x, f1 and f2.

II. COMPARISON OF THE VAN DER WAALS THEORY WITH THE EQUATION OF

STATE OF WATER

Van der Waals theory in reduced variables is called the �law of corresponding states� as it

(seemingly) applies to any liquid-gas system. As mentioned, it is an early example of universality

in statistical physics.

Try to apply it to water, whose critical point is at 647K and 22.064MPa, while its boiling point

at normal pressure is at 373.15K and 101.325kPa. The Maxwell construction at t = 0.577 gives

v1 = 0.426 and v2 = 20.5307884385, with p = 0.069064. Compare the ratios of the pressure (easy)

and of the volumes (use Wikipedia)!

III. BEYOND-VAN-DER-WAALS THEORY

We will now work on the van der Waals equation of state for t = 0.85, where the coexistence

pressure is given by pcoexist = 0.50449, with v1 = 0.55336 and v2 = 3.1276. We now show an

example where the thermodynamic inequality ∂p/∂v|T < 0 is violated. Indeed, the view of a

mixture between phases 1 and 2 as a system with free energies f1 and f2, mixed in proportion, is

too simple to describe �nite systems, where the interface between the two phases provides a �nite

contribution to the system free energy per particle.

FIG. 2: The three possible scenarios for the mixture of phases 1 and 2 in a �nite box with periodic boundary

conditions: Bubble of 1 inside 2 (left), bubble of 2 inside 1 (center), stripes of 1 and 2. Note that periodic

boundary conditions are assumed both in x and in y direction.
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Let us study this e�ect in a two-dimensional system with periodic boundary conditions in x and

in y. In fact, a mixture between phase 1 and phase 2 will look essentially like one of the three cases

shown in Fig. 2: Either an approximately spherical bubble of phase 1 inside phase 2, or a bubble of

phase 2 inside phase 1 or a stripe of phase 1 and a stripe of phase 2 (we suppose periodic boundary

conditions in x and in y).

A. Finite system vs in�nite-volume van-der-Waals theory

Explain why the interface is not considered in the in�nite-volume van-der-Waals theory, but

why it should be taken into account in a �nite system.

B. Single bubble vs vinaigrette

Suppose the existence of an interface free energy per unit length γ. Show (in simple terms) why

the equilibrium con�guration can be a single bubble of one phase in a sea of the other phase (as in

Fig. 2), but not a con�guration with many bubbles (of the same total volume), as in vinaigrette.

C. Preliminaries of the free energy of a �nite system

Consider the following simple versions of the free energy for the three scenarios in Fig. 2, where

γ is the surface tension (surface free energy per unit length) between the two phases:

f2 in 1 = f1(1− x) + f2x+
2γ√
N

√
πv2x (4)

f1 in 2 = f1(1− x) + f2x+
2γ√
N

√
πv1(1− x) (5)

f|| = f1(1− x) + f2x+
2γ√
N

√
V

N
(6)

Two of these three graphs are plotted in Fig. 3, together with the integrated van-der-Waals equation

of state, in the vicinity of v1 = 0.55336, the point of the beginning two-phase region, for a value of

2γ√
N

= 0.04.

D. Interpretation of a free-energy curve

Interprete each of the three curves in Fig. 3, and especially the behavior of f2 in 1 near v1: What

is the prediction for the pressure for f2 in 1? (NB: This pressure is called Laplace pressure).
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FIG. 3: Van der Waals free energy for the in�nite system at t = 0.85, compared to the free energies of the

bubble 2 in 1 and the stripe free energy. Note that v1 = 0.55336

E. Minimization of the free energy

Without doing any calculation (only by inspection of Fig. 3), explain the sequence of phases as

we move from v1 to larger volumes. Sketch the free energy as a function of the reduced volume.

F. Pressure in a �nite system

Without doing any calculation, again, sketch the pressure as a function of v throughout the

whole range shown in Fig. 3. Then explain (in simple terms) what happens if we go to larger

systems (N →∞ with N/V = const and constant surface tension γ).


