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I. STATISTICAL INFERENCE

1. Maximum Likelihood Method for the Bernoulli distribution. Suppose we have a coin which falls
heads up with probability p. Let Xi = X1, ..., XN represent the outcome of the ith flip (x = 1 for heads
and x = 0 for tails). X has a Bernoulli distribution with PDF

π(x; p) = px(1− p)1−x for x = 0, 1. (1)

(a) Estimate p using the MLE.

(b) Find a 95% confidence interval for p.

(c) Let τ = ep. Find the MLE for τ .

HINT: Use one of the properties of the MLE.

: (a) Calculate the likelihood function, take its log, and find the value of p that maximizes the log.

LN (p) =

N∏
i=1

π(Xi; θ) =

N∏
i=1

pXi(1− p)1−Xi

logLN (p) =

(
N∑
i=1

Xi

)
log p+

(
N −

N∑
i=1

Xi

)
log(1− p)

∂ logLN (p)

∂p

∣∣∣
p=pmle

=

∑N
i=1Xi

p
+
N −

∑N
i=1Xi

1− p

∣∣∣
p=pmle

= 0

pmle ≡ p̂ =

N∑
i=1

Xi/N = X̄

(b) Approximate 95% confidence interval is given by[
p̂−

√
1

IN (p̂)
, p̂+

√
1

IN (p̂)

]

where IN (p̂) is Fisher information evaluated at the MLE p̂.

IN (p̂) = −∂
2 logLN (p)

∂p2

∣∣∣
p=p̂
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∂2 logLN (p)

∂p2
=
−NX̄
p2

− N(1− X̄)

(1− p)2

Therefore the confidence interval is given by[
p̂− 2

√
p̂(1− p̂)
N

, p̂+ 2

√
p̂(1− p̂)
N

]

(c) Use the fact that MLE is reparametrization invariant:

τ̂ = ep̂ = eX̄

2. Bootstrap.

We consider a sample of N = 2n numbers with unknown distribution from a population of M >> N
numbers

x1, x2, . . . , xN (2)

We wonder which is the minimal value that the random variables xj can assume inside the population
and would like to use bootstrap to compute the variance of the minimum.

To our great surprise the numbers in the sample have the simple form 2j , where j = 1, 2, . . . , n+ 1

xi ∈ {2j}j∈{1,...,n+1} , (3)

and their multiplicity is given by m(j) = 2n−j for j ≤ n and 1 for j = n + 1. With this information we
can predict the outcome of the bootstrap sampling and directly estimate the empirical distribution of the
minimum

P(min{x∗i } = 2j) (4)

of the bootstrap realization {x∗i } ∈ {x1, . . . , xN}.

(a) Determine P(min{x∗i } = 2j) and the bootstrap variance Varmin
boot =< min{x∗i }2 > − < min{x∗i } >2

of the minimum.
Hint: Note that the the probability that the minimum of {x∗i } is 2j with some j is given by

P(min{x∗i } = 2j) = P(min{x∗i } > 2(j−1))− P(min{x∗i } > 2j) (5)

and that the probability that a number x∗i in the sample is equal to 2j is given by its multiplicity

P(2j ∈ {x∗i }) =
m(j)

N
(6)

Finally remember the geometric sum

j∑
i=1

ai =
aj+1 − a
a− 1

(7)
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(b) Approximate the expression assuming N large (if N is large, also n is large). You should get

Varmin
boot = 22−N .

(c) A bootstrap 1− α confidence interval is given by

P
(

min{xi} ∈
[
2 min{xi} − µ1−α/2 , 2 min{xi} − µα/2

])
= 1− α (8)

Compute the bootstrap 1−α confidence interval for the minimum of the sample min{xi} = 2. With
which confidence 1− α can we state that the minimal value is equal to 2?

Hint: Find µ1−α/2 and µα/2 using

P(min[{x∗i }] ≤ µ1−α/2) = 1− α

2
P(min[{x∗i }] ≤ µα/2) =

α

2
. (9)

and the previous result for P(min{x∗i } > 2j).

: The bootstrap method uses simulation for estimating errors and computing confidence intervals. However,
due to the simple properties of the sample, we can calculate them analytically.

First of all, we must compute the probability that, picking a random bootstrap realization {x∗1, x∗2, . . . , x∗N}
(with x∗i ∈ {x1, x2, . . . , xN}), this has a given minimal value. (We note that multiplying this prob-
ability by the number of realizations B of the simulation gives the average number of configurations
with given minimum.) Since

P(min{x∗i } = 2j) = P(min{x∗i } > 2(j−1))− P(min{x∗} > 2j) (10)

and

P(min{x∗i } > 2j) =
(

1−
∑
i≤j

P(2i ∈ {x∗k})
)N

=
(

1−
∑
i≤j

m(i)

N

)N
=

{
2−jN j ≤ n
0 j = n+ 1 .

, (11)

we have

P(min{x∗i } = 2j) =
(

1− 1

N

∑
i<j

m(i)
)N
−
(

1− 1

N

∑
i≤j

m(i)
)N

=

{
2−jN (2N − 1) j ≤ n
2−nN j = n+ 1 .

(12)

The bootstrap variance of the minimum is

Varmin
boot = (2N − 1)

n∑
j=1

22j2−jN + 22(n+1)2−nN −
(

(2N − 1)

n∑
j=1

2j2−jN + 2(n+1)2−nN
)2

=

(1− 2−N )
22 − 22(n+1)−nN

1− 22−N + 22(n+1)2−nN −
(

(1− 2−N )
2− 2(n+1)−nN

1− 21−N + 2(n+1)2−nN
)2 �N−−−→

22−N (13)

A confidence interval can be obtained using the bootstrap estimation of the probability distribution.
A bootstrap 1− α confidence interval is given by[

2 min{x} − µ1−α/2, 2 min{x} − µα/2
]

(14)
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where

P(min{x∗} ≤ µ1−α/2) = 1− α

2
(15)

and

P(min{x∗} ≤ µα/2) =
α

2
, (16)

see below for the derivation. The interpretation of the confidence interval is as follows (see Wasser-
man Sec. 6.3.2): if one (i) takes (ideally) infinitely many samples x1, · · · , xN from the population of
size M , (ii) computes the corresponding value of min(xi), (iii) computes the quantities µ1−α/2, µα/2
from the bootstrap distribution, then one finds that (1− α)% of the intervals contains the minimum
of the population.

From (11) and using that P(min{x∗} ≤ µα/2) = 1 − P(min{x∗} > µα/2) it then follows (we denote
with b. . .c the floor function)

µ1−α/2 = 2

⌊
1
N log2

2
α

⌋
(17)

µα/2 = 2

⌊
1
N log2

2
2−α

⌋
(18)

Finally, the bootstrap 1− α confidence interval is[
2 min{x} − 2

⌊
1
N log2

2
α

⌋
, 2 min{x} − 2

⌊
1
N log2

2
2−α

⌋]
(19)

If N is large and we set α = 21−N the confidence interval become

∼ [2, 4− 21/N ] ∼ [2, 3] (20)

While if α > 21−N the lower bound is larger than the upper bound coming from the sample, i.e. 2.
Since the minimum of the population is always less or equal then the minimum of the sample, the
confidence interval has to include our minimum 2. Therefore with confidence level 1 − 21−N the
minimum is 2.

Derivation of the confidence interval. Let T (x1, · · · , xN ) be the statistics we are interested in (in
the exercise, T (x1, · · · , xN ) = minxi), and let t̂ be the value that it takes on the given sample. In
principle one wants to find an interval [a, b] such that:

P (T ∈ [a, b]) = 1− α, (21)

which is ensured if we set:

P (T ≤ a) =
α

2

P (T ≥ b) =
α

2
,

(22)

or equivalently:

P
(
t̂− T ≥ t̂− a

)
=
α

2

P
(
t̂− T ≤ t̂− b

)
=
α

2
.

(23)
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In order to solve these equations for a, b, one should know the distribution of T . The idea of bootstrap
is to replace the unknown distribution of T with the distribution constructed over the sample, so that
T → t̂; at the same time, the bootstrap realizations {x∗i } give different realizations t∗, that we can use
to build a statistics for t̂. Therefore in the equations above we substitute the variable with unknown
distribution t̂− T with its bootstrap approximation t̂− T → t∗ − t̂. This gives

P
(
t̂− T ≥ t̂− a

)
≈ P

(
t∗ − t̂ ≥ t̂− a

)
=
α

2

P
(
t̂− T ≤ t̂− b

)
≈ P

(
t∗ − t̂ ≤ t̂− b

)
=
α

2
.

(24)

Then

P
(
t∗ ≤ 2t̂− a

)
= 1− α

2

P
(
t∗ ≤ 2t̂− b

)
=
α

2
,

(25)

and we can identify µ1−α2 = 2t̂− a, µα
2

= 2t̂− b.

3. Bayesian inference. In ideal gases of non-relativistic particles the speed v is described by the Maxwell-
Boltzmann distribution:

πMB(v|m, kT ) =
( m

2πkT

)3/2

4πv2e−
mv2

2kT . (26)

We would like to infer the mass of the particles from a small sample {v} consisting of n measuraments of
the velocities, taken at a given temperature kT .

(a) Construct a prior πprior(m|πMB, kT ) that encodes our knowledge of the Maxwell-Boltzmann distri-
bution and of the temperature; try to construct a prior that is invariant under reparametrizations,
that is to say a prior independent of the particular functions of v that have been measured in the
experiment.

(b) Estimate the mean and the variance of the mass using Bayesian inference.

: If we rescale the velocity by a factor k, v = αu, the distribution of u is given by

π(u|m, kT ) =
( α2m

2πkT

)3/2

4πu2e−
mα2u2

2kT . (27)

This is still a Maxwell-Boltzmann distribution with a new mass α2m. A sensible prior must be
independent of the particular units of measurement used in the experiment, therefore this rescaling
should map the prior on to itself:

π(m|πMB, kT )dm = π(α2m|πMB, kT )d(α2m) . (28)

This means

π(α2m|πMB, kT )

π(m|πMB, kT )
=

1

α2
, (29)
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that is to say

π(m|πMB , kT ) ∼ 1

m
. (30)

This function is not normalizable, but, as we are about to see, the posterior probability will be. The
posterior probability, defined as

π(m|{v}, πMB, kT ) =
π(m|πMB , kT ) (

∏n
i=1 π(vi|m, kT ))∫∞

0
dmπ(m|πMB , kT ) (

∏n
i=1 π(vi|m, kT ))

(31)

(where we used Bayes’s theorem P (A|B) = P (B|A)P (A)
P (B) ) is given by

π(m|{v}, πMB, kT ) =
(∑n

i=1 v
2
i

2kT

) 3n
2 m3n/2−1

Γ( 3n
2 )

e−
m

2kT

∑n
i=1 v

2
i . (32)

Here we introduced the Γ function

Γ(n+ 1) =

∫ ∞
0

dkkne−k , (33)

which for integer n is equal to the factorial: Γ(n + 1) = n!. A simple computation then gives the
average mass

〈m〉 =
2kT∑n
i=1 v

2
i

Γ( 3n
2 + 1)

Γ( 3n
2 )

=
3kT

1
n

∑n
i=1 v

2
i

=
3kT

v2
rms

. (34)

and the variance

Var[m] = 〈m2〉 − 〈m〉2 =
3

2n

( 2kT
1
n

∑n
i=1 v

2
i

)2

=
2

3n
〈m〉2 . (35)


