
c1 and c2 in Fig. 6.7. It was the good fortune of Kac and Ward that they all
add up to zero.

On larger than 4× 2 lattices, there are more elaborate loops. They can, for
example, have crossings (see, for example, the loop in Fig. 6.8). There, the cycle
con�gurations c1 and c2 correspond to loops in the generalization of Fig. 6.6 to
larger lattices, whereas the cycles c3 and c4 are super�uous. However, c3 makes
six left turns and two right turns, so that the overall weight is α4 = −1, whereas
the cycle c4 makes three left turns and three right turns, so that the weight is
+1, the opposite of that of c3. The weights of c3 and c4 thus cancel.

Figure 6.8: Loop and cycle con�gurations. The weights of c3 and c4 cancel.

For larger lattices, it becomes di�cult to establish that the sum of cycle
con�gurations in the determinant indeed agrees with the sum of loop con�g-
urations of the high-temperature expansion, although rigorous proofs exist to
that e�ect. However, at our introductory level, it is more rewarding to proceed
heuristically. We can, for example, write down the 144 × 144 matrix U6×6 of
the 6 × 6 lattice for various temperatures (using Alg. combinatorial-ising.py),
and evaluate the determinant detU6×6 with a standard linear-algebra routine.
Partition functions thus obtained are equivalent to those resulting from Gray-
code enumeration, even though the determinant is evaluated in on the order of
1443 ' 3×106 operations, while the Gray code goes over 235 ' 3×1010 con�g-
urations. The point is that the determinant can be evaluated for lattices that
are much too large to go through the list of all con�gurations.

The matrix UL×L for the L × L lattice contains the key to the analytic
solution of the two-dimensional Ising model �rst obtained, in the thermody-
namic limit, by Onsager (1944). To recover Onsager's solution, we would have
to compute the determinant of U , not numerically as we did, but analytically,
as a product over all the eigenvalues. Analytic expressions for the partition
functions for Ising models can also be obtained for �nite lattices with periodic
boundary conditions. To adapt for the changed boundary conditions, one needs
four matrices, generalizing the matrix U (compare with the analogous situation
for dimers in chapter xx. Remarkably, evaluating Z(β) on a �nite lattice reduces
to evaluating an explicit function (see the classical papers by Kaufman (1949)
[13] and Ferdinand and Fisher (1969) [16].

The analytic solutions of the Ising model have not been generalized to higher
dimensions, where only Monte Carlo simulations, high-temperature expansions,
and renormalization-group calculations allow to compute to high precision the
properties of the phase transition. These properties, as mentioned, are universal,
that is, they are the same for a wide class of systems, called the Ising universality
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class.

6.3 Density of states from thermodynamics

FIXME {TO FINISH In this chapter, we have computed the thermodynnamics
of the two-dimensional Ising model by two di�erent approaches that di�er in
the role played by the density of states. In Alg. enumerateising_dos, it was
appropriate to �rst compute N (E), and later determine partition functions,
internal energies, and speci�c heat capacities at any temperature. In contrast,
in the counting procedure of Kac and Ward, as in the Onsager solution of
the Ising model, we determined the partition function Z(β), not the density
of states. Computing Z(β) from N (E) is straightforward, but how to recover
N (E) from Z(β) requires some thought:

N (E)
easy−−−→←−
??

Z(β).

The mathematical problem of computing the density of states from the partition
function is one of the basic problems in statistical and solid state physics, and it
appears also in the interpretation of experimental or Monte Carlo data. In the
presence of statistical uncertainties, it is very di�cult to solve, and may often
be ill-de�ned. This means, in our case, that algorithms exist for computing NE
if the partition functions were computed exactly. If, however, Z(β) is known
only to limited precision, the output generated by the slightly perturbed input
can be drastically di�erent from the exact output.

For the two-dimensional Ising model, a procedure put together by Beale has
allowed to compute the density of states for system sizes up to 200× 200. }

6.4 Explicit calculations of Partition function (Python
+ Diagonalization)

On the website, one may �nd the 20-line program combinatorial_ising.py,
which actually computes the partitition function via the matrix diagonalization
shown in the previous section. The complex-valued matrix in question, as men-
tioned, is of size 4N × 4N , it gives directly the partition function of the Ising
model without periodic boundary conditions. From this function, through an a
bit pedestrian procedure, we can obtain the internal energy, the heat capacity,
and all the thermodynamic properties. Of course, our program only works for
small lattices, it would have to be written more carefully in order to avoid nu-
merical over�ow. The matrices that we have written down can be diagonalized
explicitly, and all the eigenvalues computed (TODO). The result agrees very
well with the exact result.

A magni�cent result is due to Kaufman in 1949[13]. She has computed the
exact partition function of the N×N lattice with periodic boundary conditions,
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and obtained an explicit formula for it. This explicit formula is programmed in
kaufman_formula.py.

6.5 General results for the NxN Ising model, Kauf-
man, Ferdinand & Fisher

Let us consider, for a moment, the formulas for the free energy

Z(β) =

∝ 2N terms︷ ︸︸ ︷∑
σ1=±1,...,σN=±1

exp−βE(σ1, . . . , σN ) =

∝ N terms︷ ︸︸ ︷∑
E

dosE exp−βE .

Similarly, the mean energy 〈E〉 can be computed from Z(β) by numerical dif-
ferentiation, that is,

〈E〉 = − ∂

∂β
logZ, (6.12) {OD_mean_energy_derivative}

but we are again better o� using an average over the density of states:

〈E〉 =

∑
σ Eσ exp−βEσ∑
σ exp−βEσ

=
1

Z

∑
E

EdosE exp−βE, (6.13) {OD_mean_energy}

〈E〉 =

∑
σ Eσ exp−βEσ∑
σ exp−βEσ

=
1

Z

∑
E

EdosE exp−βE, (6.14) {OD_mean_energy}

where we have used σ as a shorthand for {σ1, . . . , σN}. Higher moments of the
energy can also be expressed via dosE:

〈
E2
〉

=

∑
σ E

2
σ exp−βEσ∑

σ exp−βEσ
=

1

Z

∑
E

E2dosE exp−βE. (6.15) {OD_mean_square_energy}

The speci�c heat capacity CV , the increase in internal energy caused by an
in�nitesimal increase in temperature,

CV =
∂ 〈E〉
∂T

=
∂β

∂T

∂ 〈E〉
∂β

= −β2 ∂ 〈E〉
∂β

, (6.16) {OD_specific_head_derivative}

can be expressed via Eq. 6.12 as a second-order derivative of the partition func-
tion:

CV = β2 ∂
2

∂β2
logZ.
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Again, there is a more convenient expression, which we write for the speci�c
heat capacity per particle cV ,

cV = −β
2

N

∂ 〈E〉
∂β

= −β
2

N

∂

∂β
(

∑
σ Eσe−βEσ∑

σ e−βEσ
)

=
β2

N

∑
σ E

2e−βEσ
∑

σ e−βEσ−(
∑

σ Eσe−βEσ )2

(
∑

σ e−βEσ )2
=
β2

N
(
〈
E2
〉
− 〈E〉2),

which can be evaluated with the second formulas in Eq. 6.14 and Eq. 6.15 and
is implemented in Alg. thermo-ising. We can recognize that the speci�c heat
capacity, an experimentally measurable quantity, is proportional to the variance
of the energy, a statistical measure of the distribution of energies. Speci�c-
heat-capacity data for small two-dimensional lattices with periodic boundary
conditions are shown in Fig. 6.9.

Figure 6.9: Speci�c heat per spin for small Ising systems with peri-
odic boundary conditions. Data obtained by exact enumeration, using
Alg. enumerate_ising.py. The naive python version only works for 2 × 2 and
4× 4 systems.

6.6 Kramers and Wannier duality

We now analyze the 512 = 33 loop con�gurations in Fig. 6.3 and see where the
non-analycity of the partition function (the divergence of its second derivative
with respect to temperature, at the critical temperature Tc) can come up.

As discussed before, the loop con�gurations came from a high-temperature
expansion as it is in powers of tanhβ, that goes as β for small arguments.
Kramers and Wannier, in 1941[17], �rst noted that this same expansion also
applies to a low-temperature expansion on the dual lattice (the lattice of edges
of the original one). This is sketched in Fig. 6.11: Any loop con�guration of
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Figure 6.10: Speci�c heat per spin for the Ising model on a square lattice,
with periodic boundary conditions. From Ferdinand and Fisher (1969)[16]. The
free energy is everywhere continuous, and so is the energy per particle (a �rst
derivative of the free energy. The second derivative of the free energy, the
speci�c heat, diverges logarithmically at the critical point.

the van der Waerden high-temperature expansion on the N ×N lattice without
periodic boundary conditions, where each edge carries a tanhβ (shown on the
left �gure), could correspond to a domain of equally oriented spins within a
sea of opposite spins. As shown in the rightmost panel of the �gure, the [? ]
loop con�gurations on the N ×N lattice are isomorohic to domain loops of the
(N + 1)× (N + 1) lattice where the outer ring of spins are all negative.

By exploiting this property, Kramers and Wannier �rst obtained the value of
the critical temperature, and this of course before Onsager's analytical solution
of the model. It should be noted that at the time at which duality was �rst
discussed, Peierls had already proven (see the orgument sketched in Section 6.8)
that the two-dimensional Ising model must have a phase transition.

We continue with �nite square lattices with periodic boundary conditions:
These lattices are self-dual: The L × L lattice has a dual lattice of same size,
with lattice sites at the center of the original cells. FIXME {add �gure in 1d,
2d, 3d}.

On the L × L lattice with periodic boundary conditions, we can now write
down the partition function in two ways: On the one hand we can enumerate
domain walls, and compute as follows.

Zpbc(β) = 2 e2Nβ
∑
l

g(l)e−2lβ (6.17) {e:loops_low_T}

where g(l) is the number of loop con�gurations of length l (the red �2� comes
from the fact that we should count each loop con�guration twice, once for a �+�
domain in a sea of �-� and once for a �-� domain Eq. 6.17, the loop con�gurations
describe domain walls. There can be intersecting loops, or loops within loops,
as the �red� con�guration in Fig. 6.3.
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Figure 6.11: Square lattice duality: Left : One of the 512 loop con�guration on
the 4x4 lattice without periodic boundary condition. Each of the links on the
loop carries a tanhβ Center: Construction of a slightly larger 6× 6 lattice, and
the dual 5× 5 lattice made up of its centers. Now, the loop describes a domain
wall. Note that on the outer layer of the dual lattice, spins are put to −1. right :
5× 5 dual lattice, by itself.

An alternative representation of the partition function is given by Eq. 6.5
(the high-temperature expansion of Zxx) adapted to the case of the N -site
lattice with periodic boundary conditions. Writing it for a temperature β̃, we
have

Zpbc(β̃) = 2N cosh2N β̃
∑
l

g(l) tanhl β̃ (6.18) {e:loops_high_T}

In Eq. 6.17 and Eq. 6.18, the function g(l) describing loop con�gurations on a �-
nite lattice are exactly the same. In addition, we can choose for any temperature
β another temperature β̃, by

Υ = e−2β = tanh β̃ (6.19)

so that everything that the sums in the two equations is the same. We can then
write, in Eq. 6.17:

in Eq. 6.17: e2Nβ = tanh−N β̃ (6.20)

So that we arrive at the expression:

Z(β̃) = 2N cosh2N β̃ tanhN β̃ Z(β) (6.21) {e:Ising_duality}

If there is a single transition, it must take place at the temperature

e−2β = tanhβ =
e−β − eβ

e−β + eβ
(6.22) {e:Ising_duality_critical_T}

To �nd this temperature, we can either, naively, solve Eq. 6.22 by doing

β → β′ =

[
(β − 1

2
(log tanhβ)

]
/2 (6.23)

57



Then do β′ → β′′ etc. In a few steps, we will converge to β = 0.44068679351.
To understand this value, we set exp(−β) = x in Eq. 6.22, and further:

x2 =
1/x− x
x+ 1/x

(6.24)

which leads to a quadratic equation for u = x2 with the solution u =
√

2 − 1,
so that we reach

β = −1

2
log

1√
2− 1

=
1

2
log
(

1 +
√

2
)

= 0.44068 . . . (6.25)

To better understand the Kramers�Wannier duality, we can further investigate
it on a �nite lattice. An example for the 4 × 4 lattice with periodic boundary
condition is programmed in Alg. Ising_dual_4x4.py. We will notice that the
duality works great at small temperature (β large, β̃ small), but that there is a
�nite ratio between the partition functions.

Figure 6.12: a-c: Loop con�gurations that appear in the high-temperature ex-
pansion of the Ising model with periodic boundary conditions, but not in the
low-temperature expansion. d: Loop con�guration (made up of two loops) that
does appear in both expansions.

Unfortunately, for �nite lattices, the situation is a bit more complicated:
For periodic boundary conditions, a number of graphs in the high-temperature
expansion do not appear in the low-temperature expansion. Three example
are shown in Fig. ??, namely paths winding around the lattice in either the x
direction or the y direction, or in both x and y. So, although the �nite square
lattice is self-dual, the partition functions at β and β̃ are not exactly related
to one another. However, the di�erences are minor and do not a�ect the free
energy per site in the thermodynamic limit.

6.7 Mean-�eld solution, mean-�eld exponents

Mean-�eld theory is an important model, with which to juxtapose the richer
and more physical models. The mean �eld model consistes in supposing at the
same time that every spin has q neighbors but that it is in fact connected to all
the N − 1 other sites in the lattice. One thus writes

E(σ) = − qJ

N − 1

∑
i.j

σiσj −H
∑
i

σi (6.26)
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where the sum carries over all theN(N−1)/2 distinct pairs (i, j). It is easy to see
that the energy of the mean-�eld model only depends on the total magnetization

E(σ) = −1

2
qJ(M2 −N)/(N − 1)−HM (6.27)

where we use that the spins are all of size 1. It is extremely simple to compute
the partition function of this model, and one �nds:

Z =
∑
r

cr (6.28)

where

cr =
N !

r!(N − r)!
exp{1/2βqJ [(N − 2r)2 −N ]/(N − 1) + βH(N − 2r)} (6.29)

This model has a phase transition at βc = 1/(qJ). FIXME {Add graphs to
discuss mean-�eld theory}

6.8 Spontaneous Magnetization

As mentioned in Section 6.6, duality by itself cannot prove the existence of a
phase transition. It rather provides a relation between partition functions on a
lattice and its dual lattice at two temperatures, β and β̃. It is under the added
hypothesis that there is a (unique) phase transition point, this is due to. The
question arises how to prove that the Ising model does have a phase transition,
without going through the explicit solution that we discussed in Section ??. It
is crucial to realize In this respect, that it is not su�cient to prove that the
groundstate (that is realized at strictly zero temperature) is ferromagnetic. The
important point here is the existence of a phase transition at �nite temperature.

The important step, namely the proof that at small but �nite temperature,
there is a �nite magnetization, was taken by Peierls, in 1936[18]. It is based on
an argument about the number of paths in the low-temperature expansion. We
will not repeat this argument here.

FIXME { Peierl's argument proves the existence of a spontaneous magne-
tization, but cannot explain how it decreases to zero at the critical point.

The spontaneous magnetization is predicted by mean-�eld theory to be, but
a famous result of Onsager proves it to go to zero with a power of 1/8.}

6.9 Exact solution of the two-dimensional Ising
spin glass

In the Ising model, we choose all the interactions to equal J = +1. In many
cases, however, the interactions can be di�erent, for example all negative, or
even, for some pairse Jij = +1 and for other pairs Jij = +1 (see Fig. ??), or the
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