
Homework 1, Statistical Mechanics: Concepts and applications

2019/20 ICFP Master (�rst year)

Botao Li, Valentina Ros, Victor Dagard, Werner Krauth

A solution to this homework will be made available on 16 September 2019. Please study in the meantime.

Please contact Botao Li if you �nd the exercise unclear and the solution unclear or wrong.

(Dated: 8 September 2019)

I. CHEBYCHEV INEQUALITY: VARIATIONS ON A THEME

The Chebychev inequality:

P (|ξ − E(ξ)| > ε) ≤ Var(ξ)

ε2
(1)

is one of the fundamental achievements in probability theory, and it is of great importance in

statistics. In eq. (1), Var(ξ) denotes the variance of the distribution and E(ξ) its expectation

(mean value).

1. State all the conditions on the probability distribution fξ for the Chebychev inequality to hold.

For example, does it hold for discrete distributions (a sum of δ functions), for distributions

with in�nite expectation yet �nite variance, etc?

The only condition is that the distribution has a �nite variance. Note that this implies that

the mean value is also �nite.

2. Review the proof of Chebychev's inequality given in Lecture 1. Can the Chebychev inequality

be �sharp�, that is:

(a) Can there be a distribution fξ where, for some ε, one has

P (|ξ − E(ξ)| > ε) =
Var(ξ)

ε2
(2)

(note the �=� sign in eq. (2) instead of the �≤� in eq. (1)). If so, construct this probability

distribution. Otherwise, explain why this is not possible.

Equation 2 is satis�ed when fξ consists of delta function, located at ε, −ε, or both.

(b) Can there be a distribution f , where the inequality of eq. (1) is sharp for all real ε? If

so, construct this probability distribution. Otherwise, explain why this is not possible.



2

It is impossible. Recall the proof of Chebychev inequality, equality is achieved only if

fξ = 0 when ξ 6= ±ε. Thus, if a distribution satis�es equation 2 when ε = ε1,

equation 2 is not satis�ed for {ε|ε 6= ε1}.

II. RÉNYI'S FORMULA FOR THE SUM OF UNIFORM RANDOM NUMBERS,

VARIATIONS

In tutorial 1, you derived Rényi's formula for the sum of uniform random numbers between -1

and 1:

fn(x) =


1

2n(n−1)!

∑[n+x2 ]
k=0 (−1)k

(
n
k

)
(n+ x− 2k)n−1 for |x| < n

0 else

(3)

1. Compute the variance of the distribution of eq. (3) for n = 1, that is for uniform random

numbers between -1 and 1.

Var(ξ) = 1/3

2. Compute the variance of Rényi's distribution for general n (Hint: this can be computed in 1

minute, if you use a result presented in the lecture).

Since these random numbers are independent, Var(ξ) = n/3

3. Implement eq. (3) in a computer program for general n. For your convenience, you will �nd

such a computer program on the course website. This program also computes P (ξ > ε).

Download this program and run it (in Python 2, or you can modify it so that it runs in

Python 3). Notice that you may change the value of n in this program.

4. Modify the program (plot) so that it compares Pn(ξ > ε) to the upper limit given by the

Chebychev inequality (Attention: you may modify Chebychev's inequality to take into ac-

count that fn(x) is symmetric around x = 0). Comment.

5. Modify the program (plot) so that it compares Pn(ξ > ε) to the Cantelli inequality:

P (ξ − E(ξ) > ε) ≤ Var(ξ)

Var(ξ) + ε2
(4)

(note that there are now no absolute values). Comment.
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6. Modify the program so that it compares P (ξ > ε) to Hoe�ding's inequality. Hoe�ding's

inequality considers a probability distribution with zero expectation and ai ≤ ξi < bi (we

will later take constant bounds a and b, but in fact, they may depend on i). For every t > 0,

it states:

P (
n∑
i=1

ξi ≥ ε) ≤ exp (−tε)
n∏
i=1

exp
[
t2(bi − ai)2/8

]
. (5)

Is Hoe�ding's inequality always sharper than the Chebychev inequality, that is, is Hoe�ding

with the best value of t better than Chebychev for all ε? What is the asymptotic behavior

for ε→∞ behavior of Hoe�ding's inequality, and why does it satisfy such a stringent bound

if the Chebychev inequality does not achieve it? Return a plot that contains, next to fn(x)

and its integral Pn(ξ > ε), the comparison with Chebychev, Cantelli, and Hoe�ding.

Answer for 3, 4, 5, 6:

As plotted is �gure 1, all the inequalities are satis�ed. For Hoe�ding's inequality, the value of

t is tuned point-wise so that each point has the tightest constraint. Cantelli's inequality is the

best at the center of the distribution. Hoe�ding's inequality provides the tightest constraint

at the tail. And Chebychev's inequality outperforms the other two in between. When ε→∞,

Hoe�ding's inequality decays like a Gaussian distribution. Hoe�ding's inequality utilize the

fact that it constrains the distribution of the sum of bounded random variables, which results

in a faster decay compared with the other two inequality, which make no assumption about

the random variable they constrain.

III. LÉVY DISTRIBUTIONS, TWO SIMPLE DEMONSTRATIONS

In lecture 1 and tutorial 1, we discussed and derived Lévy distributions: Universal (stable)

distributions that have in�nite variance. A good example for producing such random variables is

from uniform random numbers between 0 and 1, ran(0, 1) taken to a power −1 < γ < −0.5. Such

random numbers are distributed according to a distribution

fξ(x) =


α

x1+α
for 1 < x <∞

0 else

(6)

where α = −1/γ (you may check this by doing a histogram, and read up on this in SMAC book).
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FIG. 1: Rényi's distribution and inequalities

1. Is the probability distribution of eq. (6) normalized for γ = −0.8 (that is α = 1.25), is it

normalized for γ = −0.2 (that is α = 5)?

Both of them are normalized

2. What is the expectation of the probability distribution for the above two cases, and what is

the variance?

For α = 1.25, E(ξ) = 5, Var(ξ) does not exist. For α = 5, E(ξ) = 5/4, Var(ξ) = 5/3.

3. Write a (two-line) computer program for generating the sum of 1000 random numbers with

γ = −0.2, and plot the empirical histogram of this distribution (that is, generate 1000 times

the sum of 1000 such random numbers. Interpret what you observe. For your convenience,

you may �nd a closely related program on the course website. Modify it so that it solves the

problem at hand, and adapt the range in the drawing routine. Produce output and discuss

it.

α = 5, Var(ξ) = 5/3. The distribution of the sum is Gaussian, as shown in �gure 2, due to

the central limit theorem.
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FIG. 2: α = 5

4. Write a (two-line) computer program for generating the sum of 1000 random numbers with

γ = −0.8, and plot the empirical histogram of this distribution. Interpret what you observe.

For your convenience, please take the closely related program from the course website. Modify

it so that it solves the problem at hand, and adapt the range in the drawing routine. Produce

output and discuss it.

α = 1.25, Var(ξ) does not exist. The central limit theorem no longer applies.
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FIG. 3: α = 1.25


