Factor Metropolis X2X4 patch.py
From Werner KRAUTH
Contents |
[edit]
Context
This page is part of my 2024 Beg Rohu Lectures on "The second Markov chain revolution" at the Summer School "Concepts and Methods of Statistical Physics" (3 - 15 June 2024).
[edit]
Python program
import math import random import matplotlib.pyplot as plt def u(x): return x ** 2 / 2.0 + x ** 4 / 4.0 def u2(pos): return 0.5 * pos ** 2 def u4(pos): return 0.25 * pos ** 4 x = 0.0 delta = 0.1 data = [] n_samples = 10 ** 6 for i in range(n_samples): new_x = x + random.uniform(-delta, delta) delta_u2 = u2(new_x) - u2(x) delta_u4 = u4(new_x) - u4(x) Upsilon2 = random.uniform(0.0, 1.0) Upsilon4 = random.uniform(0.0, 1.0) if Upsilon2 < math.exp(-delta_u2) and Upsilon4 < math.exp(-delta_u4): x = new_x data.append(x) plt.title('Factorized Metropolis algorithm (patch), anharmonic oscillator' ) plt.xlabel('$x$') plt.ylabel('$\pi(x)$') plt.hist(data, bins=100, density=True,label='data') XValues = [] YValues = [] for i in range(-1000,1000): x = i / 400.0 XValues.append(x) YValues.append(math.exp(- u(x)) / 1.93525) plt.plot(XValues, YValues, label='theory') plt.legend(loc='upper right') plt.show()
[edit]
Further information
[edit]
References
- Tartero, G., Krauth, W. Concepts in Monte Carlo sampling, Am. J. Phys. 92, 65–77 (2024) [https://arxiv.org/pdf/2309.03136 arXiv:2309.03136