Naive surface 2d.py
From Werner KRAUTH
[edit]
Context
This page is part of my 2024 Beg Rohu Lectures on "The second Markov chain revolution" at the Summer School "Concepts and Methods of Statistical Physics" (3 - 15 June 2024).
[edit]
Python program
import random, math import matplotlib.pyplot as plt N_trials = 1000000 data = [] twopi = 2.0 * math.pi for iter in range(N_trials): x = random.uniform(-1.0, 1.0) y = random.uniform(-1.0, 1.0) r = math.sqrt(x ** 2 + y ** 2) if r < 1.0: x = x / r; y = y / r # uniform sample on the surface of unit sphere phi = (math.atan2(y, x) + twopi) % twopi data.append(phi) plt.title('naive_surface_2d.py (histogram of angles)') plt.xlabel('angle') plt.ylabel('histogram') plt.hist(data, bins=100, density=True) plt.show()