Sample transformation power.py
From Werner KRAUTH
[edit]
Context
This page is part of my 2024 Beg Rohu Lectures on "The second Markov chain revolution" at the Summer School "Concepts and Methods of Statistical Physics" (3 - 15 June 2024).
[edit]
Python program
import random, math import matplotlib.pyplot as plt N_trials = 1000000 data = [] gamma = -0.7 for iter in range(N_trials): Upsilon = random.uniform(0.0, 1.0) # # This is the sample transformation SMAC eqs (1.28), (1.29) # x = Upsilon ** (1.0 / (gamma + 1)) data.append(x) plt.title('power-law distribution (sample transformation) $\gamma = $ '+ str(gamma)) plt.xlabel('$x$') plt.ylabel('$\pi(x)$') plt.hist(data, bins=100, density=True,label='data') XValues = [] YValues = [] for i in range(5, 1000): x = i / 1000.0 XValues.append(x) YValues.append((gamma + 1.0) * x ** gamma) plt.plot(XValues, YValues, label='theory') plt.legend(loc='upper right') plt.show()