Enumerate ising.py

From Werner KRAUTH

(Difference between revisions)
Jump to: navigation, search
Revision as of 21:39, 22 September 2015
Werner (Talk | contribs)

← Previous diff
Revision as of 21:55, 22 September 2015
Werner (Talk | contribs)

Next diff →
Line 1: Line 1:
-This page presents the program markov_disks_box.py, a Markov-chain algorithm for four disks in a square box of sides 1.+This page presents the program enumerate_ising.py, an enumeration algorithm for the Ising model using the Gray code.
__FORCETOC__ __FORCETOC__
Line 5: Line 5:
=Program= =Program=
- 
- import random 
-  
- L = [[0.25, 0.25], [0.75, 0.25], [0.25, 0.75], [0.75, 0.75]] 
- sigma = 0.15 
- sigma_sq = sigma ** 2 
- delta = 0.1 
- n_steps = 1000 
- for steps in range(n_steps): 
- a = random.choice(L) 
- b = [a[0] + random.uniform(-delta, delta), a[1] + random.uniform(-delta, delta)] 
- min_dist = min((b[0] - c[0]) ** 2 + (b[1] - c[1]) ** 2 for c in L if c != a) 
- box_cond = min(b[0], b[1]) < sigma or max(b[0], b[1]) > 1.0 - sigma 
- if not (box_cond or min_dist < 4.0 * sigma ** 2): 
- a[:] = b 
- print L 
- 
-=Version= 
-See history for version information. 
- 
-[[Category:Python]] 
- 
- 
def gray_flip(t, N): def gray_flip(t, N):
k = t[0] k = t[0]
Line 51: Line 28:
S[k - 1] *= -1 S[k - 1] *= -1
print S, E print S, E
 +
 +=Version=
 +See history for version information.
 +
 +[[Category:Python]] [[Category:Honnef_2015]] [[Category:MOOC_SMAC]]

Revision as of 21:55, 22 September 2015

This page presents the program enumerate_ising.py, an enumeration algorithm for the Ising model using the Gray code.


Contents

Description

Program

def gray_flip(t, N):
    k = t[0]
    if k > N: return t, k
    t[k - 1] = t[k]
    t[k] = k + 1
    if k != 1: t[0] = 1
    return t, k

L = 4
N = L * L
nbr = {i : ((i // L) * L + (i + 1) % L, (i + L) % N,
            (i // L) * L + (i - 1) % L, (i - L) % N)
                                    for i in range(N)}
S = [-1] * N
E = -2 * N
print S, E
tau = range(1, N + 2)
for i in range(1, 2 ** N):
    tau, k = gray_flip(tau, N)
    h = sum(S[n] for n in nbr[k - 1])
    E += 2 * h * S[k - 1]
    S[k - 1] *= -1
    print S, E

Version

See history for version information.

Personal tools