Heat bath ising.py
From Werner KRAUTH
(Difference between revisions)
| Revision as of 21:47, 22 September 2015 Werner (Talk | contribs) ← Previous diff |
Current revision Werner (Talk | contribs) |
||
| Line 37: | Line 37: | ||
| See history for version information. | See history for version information. | ||
| - | [[Category:Python]] | + | [[Category:Python]] [[Category:Honnef_2015]] [[Category:MOOC_SMAC]] |
Current revision
This page presents the program heat_bath_ising.py, a heat-bath algorithm for the Ising model on an LxL square lattice in two dimensions.
Contents |
[edit]
Description
[edit]
Program
import random, math
L = 6
N = L * L
nbr = {i : ((i // L) * L + (i + 1) % L, (i + L) % N,
(i // L) * L + (i - 1) % L, (i - L) % N) \
for i in range(N)}
nsteps = 10000000
beta = 1.0
S = [random.choice([-1, 1]) for site in range(N)]
E = -0.5 * sum(S[k] * sum(S[nn] for nn in nbr[k]) \
for k in range(N))
E_tot, E2_tot = 0.0, 0.0
random.seed('123456')
for step in range(nsteps):
k = random.randint(0, N - 1)
Upsilon = random.uniform(0.0, 1.0)
h = sum(S[nn] for nn in nbr[k])
Sk_old = S[k]
S[k] = -1
if Upsilon < 1.0 / (1.0 + math.exp(-2.0 * beta * h)):
S[k] = 1
if S[k] != Sk_old:
E -= 2.0 * h * S[k]
E_tot += E
E2_tot += E ** 2
E_av = E_tot / float(nsteps)
E2_av = E2_tot / float(nsteps)
c_V = beta ** 2 * (E2_av - E_av ** 2) / float(N)
[edit]
Version
See history for version information.
