TVDTemperingRev.py
From Werner KRAUTH
(Difference between revisions)
| Revision as of 10:23, 8 September 2022 Werner (Talk | contribs) ← Previous diff |
Current revision Werner (Talk | contribs) |
||
| Line 1: | Line 1: | ||
| - | # | + | # |
| - | # Simulated tempering for the V-shaped stationary distribution --- Metropolis | + | # Simulated tempering for the V-shaped stationary distribution --- Metropolis |
| - | # algorithm | + | # algorithm |
| - | # | + | # |
| - | import random | + | import random |
| - | import pylab | + | import pylab |
| - | import numpy as np | + | import numpy as np |
| - | for n in [10, 20, 40, 80, 160, 320]: | + | for n in [10, 20, 40, 80, 160, 320]: |
| - | ReplicaChange = 0.1 | + | ReplicaChange = 0.1 |
| - | const = 4.0 / n ** 2 | + | const = 4.0 / n ** 2 |
| - | PiStat = {} | + | PiStat = {} |
| - | Table = [] | + | Table = [] |
| - | for x in range(1, n + 1): | + | for x in range(1, n + 1): |
| - | Table.append((x, 0)) | + | Table.append((x, 0)) |
| - | Table.append((x, 1)) | + | Table.append((x, 1)) |
| - | # | + | # |
| - | # factor of 1/2 because the total must be normalized | + | # factor of 1/2 because the total must be normalized |
| - | # | + | # |
| - | PiStat[(x, 0)] = 1.0 / float(n) / 2.0 | + | PiStat[(x, 0)] = 1.0 / float(n) / 2.0 |
| - | PiStat[(x, 1)] = const * abs( (n + 1) / 2 - x) / 2.0 | + | PiStat[(x, 1)] = const * abs( (n + 1) / 2 - x) / 2.0 |
| - | PiStat[(0, 0)] = 0.0 | + | PiStat[(0, 0)] = 0.0 |
| - | PiStat[(0, 1)] = 0.0 | + | PiStat[(0, 1)] = 0.0 |
| - | PiStat[(n + 1, 0)] = 0.0 | + | PiStat[(n + 1, 0)] = 0.0 |
| - | PiStat[(n + 1, 1)] = 0.0 | + | PiStat[(n + 1, 1)] = 0.0 |
| - | PTrans = np.eye(2 * n) | + | PTrans = np.eye(2 * n) |
| - | Pi = np.zeros([2 * n]) | + | Pi = np.zeros([2 * n]) |
| - | for x in range(1, n + 1): | + | for x in range(1, n + 1): |
| - | for Rep in [0, 1]: | + | for Rep in [0, 1]: |
| - | i = Table.index((x, Rep)) | + | i = Table.index((x, Rep)) |
| - | Pi[i] = PiStat[(x, Rep)] | + | Pi[i] = PiStat[(x, Rep)] |
| - | for Dir in [-1, 1]: | + | for Dir in [-1, 1]: |
| - | if PiStat[(x + Dir, Rep)] > 0.0: | + | if PiStat[(x + Dir, Rep)] > 0.0: |
| - | j = Table.index((x + Dir, Rep)) | + | j = Table.index((x + Dir, Rep)) |
| - | PTrans[i, j] = min(1.0, PiStat[(x + Dir, Rep)] / PiStat[(x, Rep)]) / 2.0 | + | PTrans[i, j] = min(1.0, PiStat[(x + Dir, Rep)] / PiStat[(x, Rep)]) / 2.0 |
| - | PTrans[i, i] -= PTrans[i, j] | + | PTrans[i, i] -= PTrans[i, j] |
| - | PReplica = np.zeros((2 * n,2 * n)) | + | PReplica = np.zeros((2 * n,2 * n)) |
| - | for x in range(1, n + 1): | + | for x in range(1, n + 1): |
| - | i = Table.index((x,0)) | + | i = Table.index((x,0)) |
| - | j = Table.index((x,1)) | + | j = Table.index((x,1)) |
| - | PReplica[i, j] = ReplicaChange * min(1.0, PiStat[(x, 1)] / PiStat[(x, 0)]) | + | PReplica[i, j] = ReplicaChange * min(1.0, PiStat[(x, 1)] / PiStat[(x, 0)]) |
| - | PReplica[i, i] = 1.0 - PReplica[i, j] | + | PReplica[i, i] = 1.0 - PReplica[i, j] |
| - | PReplica[j, i] = ReplicaChange * min(1.0, PiStat[(x, 0)] / PiStat[(x, 1)]) | + | PReplica[j, i] = ReplicaChange * min(1.0, PiStat[(x, 0)] / PiStat[(x, 1)]) |
| - | PReplica[j, j] = 1.0 - PReplica[j, i] | + | PReplica[j, j] = 1.0 - PReplica[j, i] |
| - | P = PTrans @ PReplica | + | P = PTrans @ PReplica |
| - | Pit = np.zeros([2 * n]) | + | Pit = np.zeros([2 * n]) |
| - | Pit[0] = 1.0 | + | Pit[0] = 1.0 |
| - | xvalues = [] | + | xvalues = [] |
| - | yvalues = [] | + | yvalues = [] |
| - | iter = 0 | + | iter = 0 |
| - | while True: | + | while True: |
| - | iter += 1 | + | iter += 1 |
| - | Pit = Pit @ P | + | Pit = Pit @ P |
| - | TVD = sum(np.absolute(Pi - Pit) / 2.0) | + | TVD = sum(np.absolute(Pi - Pit) / 2.0) |
| - | xvalues.append(iter / float(n ** 2)) | + | xvalues.append(iter / float(n ** 2)) |
| - | yvalues.append(TVD) | + | yvalues.append(TVD) |
| - | if TVD < 0.1: break | + | if TVD < 0.1: break |
| - | pylab.plot(xvalues,yvalues, label='$n =$ '+str(n)) | + | pylab.plot(xvalues,yvalues, label='$n =$ '+str(n)) |
| - | pylab.legend(loc='upper right') | + | pylab.legend(loc='upper right') |
| - | pylab.xlabel("$t/ n^2$ (rescaled time) ") | + | pylab.xlabel("$t/ n^2$ (rescaled time) ") |
| - | pylab.ylabel("TVD") | + | pylab.ylabel("TVD") |
| - | pylab.title("TVD rev tempering on the path graph of $n$ sites") | + | pylab.title("TVD rev tempering on the path graph of $n$ sites") |
| - | pylab.show() | + | pylab.show() |
Current revision
#
# Simulated tempering for the V-shaped stationary distribution --- Metropolis
# algorithm
#
import random
import pylab
import numpy as np
for n in [10, 20, 40, 80, 160, 320]:
ReplicaChange = 0.1
const = 4.0 / n ** 2
PiStat = {}
Table = []
for x in range(1, n + 1):
Table.append((x, 0))
Table.append((x, 1))
#
# factor of 1/2 because the total must be normalized
#
PiStat[(x, 0)] = 1.0 / float(n) / 2.0
PiStat[(x, 1)] = const * abs( (n + 1) / 2 - x) / 2.0
PiStat[(0, 0)] = 0.0
PiStat[(0, 1)] = 0.0
PiStat[(n + 1, 0)] = 0.0
PiStat[(n + 1, 1)] = 0.0
PTrans = np.eye(2 * n)
Pi = np.zeros([2 * n])
for x in range(1, n + 1):
for Rep in [0, 1]:
i = Table.index((x, Rep))
Pi[i] = PiStat[(x, Rep)]
for Dir in [-1, 1]:
if PiStat[(x + Dir, Rep)] > 0.0:
j = Table.index((x + Dir, Rep))
PTrans[i, j] = min(1.0, PiStat[(x + Dir, Rep)] / PiStat[(x, Rep)]) / 2.0
PTrans[i, i] -= PTrans[i, j]
PReplica = np.zeros((2 * n,2 * n))
for x in range(1, n + 1):
i = Table.index((x,0))
j = Table.index((x,1))
PReplica[i, j] = ReplicaChange * min(1.0, PiStat[(x, 1)] / PiStat[(x, 0)])
PReplica[i, i] = 1.0 - PReplica[i, j]
PReplica[j, i] = ReplicaChange * min(1.0, PiStat[(x, 0)] / PiStat[(x, 1)])
PReplica[j, j] = 1.0 - PReplica[j, i]
P = PTrans @ PReplica
Pit = np.zeros([2 * n])
Pit[0] = 1.0
xvalues = []
yvalues = []
iter = 0
while True:
iter += 1
Pit = Pit @ P
TVD = sum(np.absolute(Pi - Pit) / 2.0)
xvalues.append(iter / float(n ** 2))
yvalues.append(TVD)
if TVD < 0.1: break
pylab.plot(xvalues,yvalues, label='$n =$ '+str(n))
pylab.legend(loc='upper right')
pylab.xlabel("$t/ n^2$ (rescaled time) ")
pylab.ylabel("TVD")
pylab.title("TVD rev tempering on the path graph of $n$ sites")
pylab.show()
