Markov ising.py

From Werner KRAUTH

(Difference between revisions)
Jump to: navigation, search
Revision as of 21:51, 22 September 2015
Werner (Talk | contribs)

← Previous diff
Revision as of 22:24, 4 March 2024
Werner (Talk | contribs)
(Program)
Next diff →
Line 5: Line 5:
=Program= =Program=
 + import random, math
- + L = 6
- +
- +
- import random, math+
- +
- L = 16+
N = L * L N = L * L
nbr = {i : ((i // L) * L + (i + 1) % L, (i + L) % N, nbr = {i : ((i // L) * L + (i + 1) % L, (i + L) % N,
(i // L) * L + (i - 1) % L, (i - L) % N) \ (i // L) * L + (i - 1) % L, (i - L) % N) \
for i in range(N)} for i in range(N)}
- nsteps = 1000000+ nsteps = 10000000
- T = 2.0+ T = 1.0
beta = 1.0 / T beta = 1.0 / T
S = [random.choice([1, -1]) for k in range(N)] S = [random.choice([1, -1]) for k in range(N)]
 + E = -0.5 * sum(S[k] * sum(S[nn] for nn in nbr[k]) \
 + for k in range(N))
 + E_tot, E2_tot = 0.0, 0.0
for step in range(nsteps): for step in range(nsteps):
k = random.randint(0, N - 1) k = random.randint(0, N - 1)
- delta_E = 2.0 * S[k] * sum(S[nn] for nn in nbr[k])+ h = sum(S[nn] for nn in nbr[k])
 + Sk_old = S[k]
 + delta_E = 2.0 * S[k] * h
if random.uniform(0.0, 1.0) < math.exp(-beta * delta_E): if random.uniform(0.0, 1.0) < math.exp(-beta * delta_E):
S[k] *= -1 S[k] *= -1
- print S, sum(S)+ E -= 2.0 * h * S[k]
 + E_tot += E
 + E2_tot += E ** 2
 + E_av = E_tot / float(nsteps)
 + E2_av = E2_tot / float(nsteps)
 + c_V = beta ** 2 * (E2_av - E_av ** 2) / float(N)
 + print(E_av / N,c_V)
=Version= =Version=

Revision as of 22:24, 4 March 2024

This page presents the program markov_ising.py, a Markov-chain algorithm for the Ising model on an LXL square lattice in two dimensions.

Contents

Description

Program

import random, math
L = 6
N = L * L
nbr = {i : ((i // L) * L + (i + 1) % L, (i + L) % N,
            (i // L) * L + (i - 1) % L, (i - L) % N) \
                                    for i in range(N)}
nsteps = 10000000
T = 1.0
beta = 1.0 / T
S = [random.choice([1, -1]) for k in range(N)]
E = -0.5 * sum(S[k] * sum(S[nn] for nn in nbr[k]) \
                                for k in range(N))
E_tot, E2_tot = 0.0, 0.0
for step in range(nsteps):
    k = random.randint(0, N - 1)
    h = sum(S[nn] for nn in nbr[k])
    Sk_old = S[k]
    delta_E = 2.0 * S[k] * h
    if random.uniform(0.0, 1.0) < math.exp(-beta * delta_E):
        S[k] *= -1
        E -= 2.0 * h * S[k]
    E_tot += E
    E2_tot += E ** 2
E_av  = E_tot / float(nsteps)
E2_av = E2_tot / float(nsteps)
c_V = beta ** 2 * (E2_av - E_av ** 2) / float(N)
print(E_av / N,c_V)

Version

See history for version information.

Personal tools