Bounded Lifted Metropolis X2X4.py
From Werner KRAUTH
(Difference between revisions)
Revision as of 06:39, 11 June 2024 Werner (Talk | contribs) ← Previous diff |
Revision as of 06:40, 11 June 2024 Werner (Talk | contribs) Next diff → |
||
Line 4: | Line 4: | ||
def u(x): | def u(x): | ||
return x ** 2 / 2.0 + x ** 4 / 4.0 | return x ** 2 / 2.0 + x ** 4 / 4.0 | ||
- | + | ||
def u_bound(pos): | def u_bound(pos): | ||
floor = math.floor(abs(pos)) | floor = math.floor(abs(pos)) | ||
Line 17: | Line 17: | ||
u_pos = m * (abs(pos) - floor) + u_floor | u_pos = m * (abs(pos) - floor) + u_floor | ||
return u_pos | return u_pos | ||
- | + | ||
x = 0.0 | x = 0.0 | ||
delta = 0.1 | delta = 0.1 | ||
sigma = random.choice([-1, 1]) | sigma = random.choice([-1, 1]) | ||
- | + | ||
data = [] | data = [] | ||
n_samples = 10 ** 6 | n_samples = 10 ** 6 | ||
Line 37: | Line 37: | ||
sigma *= -1 | sigma *= -1 | ||
data.append(x) | data.append(x) | ||
- | + | ||
plt.title('Bounded-Lifted Metropolis algorithm, anharmonic oscillator') | plt.title('Bounded-Lifted Metropolis algorithm, anharmonic oscillator') | ||
plt.xlabel('$x$') | plt.xlabel('$x$') | ||
Line 51: | Line 51: | ||
plt.legend(loc='upper right') | plt.legend(loc='upper right') | ||
plt.show() | plt.show() | ||
- | ~ |
Revision as of 06:40, 11 June 2024
import math import random import matplotlib.pyplot as plt def u(x): return x ** 2 / 2.0 + x ** 4 / 4.0 def u_bound(pos): floor = math.floor(abs(pos)) ceiling = math.ceil(abs(pos)) u_floor = 0 for n in range(floor + 1): u_floor += n + n ** 3 u_ceiling = u_floor + ceiling + ceiling ** 3 u_pos = u_floor if floor != abs(pos): m = (u_ceiling - u_floor) / (ceiling - floor) u_pos = m * (abs(pos) - floor) + u_floor return u_pos x = 0.0 delta = 0.1 sigma = random.choice([-1, 1]) data = [] n_samples = 10 ** 6 for i in range(n_samples): new_x = x + sigma * random.uniform(0.0, delta) delta_u = u(new_x) - u(x) delta_u_tilde = u_bound(new_x) - u_bound(x) fil = math.exp(-delta_u) if random.uniform(0.0, 1.0) < min(1.0, math.exp(-delta_u_tilde)): x = new_x else: if random.uniform(0.0, 1.0) > (1.0 - math.exp(-delta_u)) / (1.0 - math.exp(-delta_u_tilde)): x = new_x else: sigma *= -1 data.append(x) plt.title('Bounded-Lifted Metropolis algorithm, anharmonic oscillator') plt.xlabel('$x$') plt.ylabel('$\pi(x)$') plt.hist(data, bins=100, density=True, label='data') XValues = [] YValues = [] for i in range(-1000,1000): x = i / 400.0 XValues.append(x) YValues.append(math.exp(- u(x)) / 1.93525) plt.plot(XValues, YValues, label='theory') plt.legend(loc='upper right') plt.show()