ZigZag X2X4.py

From Werner KRAUTH

(Difference between revisions)
Jump to: navigation, search
Revision as of 22:49, 10 June 2024
Werner (Talk | contribs)

← Previous diff
Current revision
Werner (Talk | contribs)

Line 1: Line 1:
 +==Context==
 +This page is part of my [[BegRohu_Lectures_2024|2024 Beg Rohu Lectures]] on "The second Markov chain revolution" at the [https://www.ipht.fr/Meetings/BegRohu2024/index.html Summer School] "Concepts and Methods of Statistical Physics" (3 - 15 June 2024).
 +
 +==Python program==
 +
import math import math
import random import random
Line 33: Line 38:
plt.legend(loc='upper right') plt.legend(loc='upper right')
plt.show() plt.show()
 +
 +==Further information==
 +==References==
 +* Tartero, G., Krauth, W. Concepts in Monte Carlo sampling, Am. J. Phys. 92, 65–77 (2024) [https://arxiv.org/pdf/2309.03136 arXiv:2309.03136]

Current revision

Contents

Context

This page is part of my 2024 Beg Rohu Lectures on "The second Markov chain revolution" at the Summer School "Concepts and Methods of Statistical Physics" (3 - 15 June 2024).

Python program

import math
import random
import matplotlib.pyplot as plt
def u(x): return x ** 2 / 2.0 + x ** 4 / 4.0

x = 0.0
time_ev = 0.0
sigma = 1 if x <= 0.0 else -1

data = []
n_samples = 10 ** 6
while len(data) < n_samples:
    delta_u = -math.log(random.random())
    new_x = sigma * math.sqrt(-1.0 + math.sqrt(1.0 + 4.0 * delta_u))
    new_time_ev = time_ev + abs(new_x - x)
    for t in range(math.ceil(time_ev), math.floor(new_time_ev) + 1):
        data.append(x + sigma * (t - time_ev))
    x = new_x
    time_ev = new_time_ev
    sigma *= -1

plt.title('Zig-Zag algorithm, anharmonic oscillator')
plt.xlabel('$x$')
plt.ylabel('$\pi(x)$')
plt.hist(data, bins=100, density=True, label='data')
XValues = []
YValues = []
for i in range(-1000,1000):
    x = i / 400.0
    XValues.append(x)
    YValues.append(math.exp(- u(x)) / 1.93525)
plt.plot(XValues, YValues, label='theory')
plt.legend(loc='upper right')
plt.show()

Further information

References

  • Tartero, G., Krauth, W. Concepts in Monte Carlo sampling, Am. J. Phys. 92, 65–77 (2024) arXiv:2309.03136
Personal tools