Markov ising.py

From Werner KRAUTH

(Difference between revisions)
Jump to: navigation, search
Revision as of 21:31, 22 September 2015
Werner (Talk | contribs)

← Previous diff
Revision as of 21:38, 22 September 2015
Werner (Talk | contribs)

Next diff →
Line 1: Line 1:
 +This page presents the program markov_disks_box.py, a Markov-chain algorithm for four disks in a square box of sides 1.
 +
 +__FORCETOC__
 +=Description=
 +
 +=Program=
 +
 + import random
 +
 + L = [[0.25, 0.25], [0.75, 0.25], [0.25, 0.75], [0.75, 0.75]]
 + sigma = 0.15
 + sigma_sq = sigma ** 2
 + delta = 0.1
 + n_steps = 1000
 + for steps in range(n_steps):
 + a = random.choice(L)
 + b = [a[0] + random.uniform(-delta, delta), a[1] + random.uniform(-delta, delta)]
 + min_dist = min((b[0] - c[0]) ** 2 + (b[1] - c[1]) ** 2 for c in L if c != a)
 + box_cond = min(b[0], b[1]) < sigma or max(b[0], b[1]) > 1.0 - sigma
 + if not (box_cond or min_dist < 4.0 * sigma ** 2):
 + a[:] = b
 + print L
 +
 +=Version=
 +See history for version information.
 +
 +[[Category:Python]]
 +
 +
 +
import random, math import random, math

Revision as of 21:38, 22 September 2015

This page presents the program markov_disks_box.py, a Markov-chain algorithm for four disks in a square box of sides 1.


Contents

Description

Program

import random

L = [[0.25, 0.25], [0.75, 0.25], [0.25, 0.75], [0.75, 0.75]]
sigma = 0.15
sigma_sq = sigma ** 2
delta = 0.1
n_steps = 1000
for steps in range(n_steps):
    a = random.choice(L)
    b = [a[0] + random.uniform(-delta, delta), a[1] + random.uniform(-delta, delta)]
    min_dist = min((b[0] - c[0]) ** 2 + (b[1] - c[1]) ** 2 for c in L if c != a)
    box_cond = min(b[0], b[1]) < sigma or max(b[0], b[1]) > 1.0 - sigma
    if not (box_cond or min_dist < 4.0 * sigma ** 2):
        a[:] = b
print L

Version

See history for version information.


import random, math

L = 16
N = L * L
nbr = {i : ((i // L) * L + (i + 1) % L, (i + L) % N,
            (i // L) * L + (i - 1) % L, (i - L) % N) \
                                    for i in range(N)}
nsteps = 1000000
T = 2.0
beta = 1.0 / T
S = [random.choice([1, -1]) for k in range(N)]
for step in range(nsteps):
    k = random.randint(0, N - 1)
    delta_E = 2.0 * S[k] * sum(S[nn] for nn in nbr[k])
    if random.uniform(0.0, 1.0) < math.exp(-beta * delta_E):
        S[k] *= -1
print S, sum(S)
Personal tools