Markov ising.py
From Werner KRAUTH
(Difference between revisions)
Revision as of 21:51, 22 September 2015 Werner (Talk | contribs) ← Previous diff |
Revision as of 22:24, 4 March 2024 Werner (Talk | contribs) (→Program) Next diff → |
||
Line 5: | Line 5: | ||
=Program= | =Program= | ||
+ | import random, math | ||
- | + | L = 6 | |
- | + | ||
- | + | ||
- | import random, math | + | |
- | + | ||
- | L = 16 | + | |
N = L * L | N = L * L | ||
nbr = {i : ((i // L) * L + (i + 1) % L, (i + L) % N, | nbr = {i : ((i // L) * L + (i + 1) % L, (i + L) % N, | ||
(i // L) * L + (i - 1) % L, (i - L) % N) \ | (i // L) * L + (i - 1) % L, (i - L) % N) \ | ||
for i in range(N)} | for i in range(N)} | ||
- | nsteps = 1000000 | + | nsteps = 10000000 |
- | T = 2.0 | + | T = 1.0 |
beta = 1.0 / T | beta = 1.0 / T | ||
S = [random.choice([1, -1]) for k in range(N)] | S = [random.choice([1, -1]) for k in range(N)] | ||
+ | E = -0.5 * sum(S[k] * sum(S[nn] for nn in nbr[k]) \ | ||
+ | for k in range(N)) | ||
+ | E_tot, E2_tot = 0.0, 0.0 | ||
for step in range(nsteps): | for step in range(nsteps): | ||
k = random.randint(0, N - 1) | k = random.randint(0, N - 1) | ||
- | delta_E = 2.0 * S[k] * sum(S[nn] for nn in nbr[k]) | + | h = sum(S[nn] for nn in nbr[k]) |
+ | Sk_old = S[k] | ||
+ | delta_E = 2.0 * S[k] * h | ||
if random.uniform(0.0, 1.0) < math.exp(-beta * delta_E): | if random.uniform(0.0, 1.0) < math.exp(-beta * delta_E): | ||
S[k] *= -1 | S[k] *= -1 | ||
- | print S, sum(S) | + | E -= 2.0 * h * S[k] |
+ | E_tot += E | ||
+ | E2_tot += E ** 2 | ||
+ | E_av = E_tot / float(nsteps) | ||
+ | E2_av = E2_tot / float(nsteps) | ||
+ | c_V = beta ** 2 * (E2_av - E_av ** 2) / float(N) | ||
+ | print(E_av / N,c_V) | ||
=Version= | =Version= |
Revision as of 22:24, 4 March 2024
This page presents the program markov_ising.py, a Markov-chain algorithm for the Ising model on an LXL square lattice in two dimensions.
Contents |
Description
Program
import random, math
L = 6 N = L * L nbr = {i : ((i // L) * L + (i + 1) % L, (i + L) % N, (i // L) * L + (i - 1) % L, (i - L) % N) \ for i in range(N)} nsteps = 10000000 T = 1.0 beta = 1.0 / T S = [random.choice([1, -1]) for k in range(N)] E = -0.5 * sum(S[k] * sum(S[nn] for nn in nbr[k]) \ for k in range(N)) E_tot, E2_tot = 0.0, 0.0 for step in range(nsteps): k = random.randint(0, N - 1) h = sum(S[nn] for nn in nbr[k]) Sk_old = S[k] delta_E = 2.0 * S[k] * h if random.uniform(0.0, 1.0) < math.exp(-beta * delta_E): S[k] *= -1 E -= 2.0 * h * S[k] E_tot += E E2_tot += E ** 2 E_av = E_tot / float(nsteps) E2_av = E2_tot / float(nsteps) c_V = beta ** 2 * (E2_av - E_av ** 2) / float(N) print(E_av / N,c_V)
Version
See history for version information.