Factor Metropolis X2X4.py

From Werner KRAUTH

(Difference between revisions)
Jump to: navigation, search
Revision as of 13:47, 11 June 2024
Werner (Talk | contribs)

← Previous diff
Current revision
Werner (Talk | contribs)
(References)
Line 45: Line 45:
==Further information== ==Further information==
==References== ==References==
-* Tartero, G., Krauth, W. Concepts in Monte Carlo sampling, Am. J. Phys. 92, 65–77 (2024) [https://arxiv.org/pdf/2309.03136 arXiv:2309.03136+* Tartero, G., Krauth, W., Concepts in Monte Carlo sampling, Am. J. Phys. 92, 65–77 (2024) [https://arxiv.org/pdf/2309.03136 arXiv:2309.03136]

Current revision

Contents

Context

This page is part of my 2024 Beg Rohu Lectures on "The second Markov chain revolution" at the Summer School "Concepts and Methods of Statistical Physics" (3 - 15 June 2024).

Python program

import math
import random
import matplotlib.pyplot as plt

def u(x): return x ** 2 / 2.0 + x ** 4 / 4.0

def u2(pos): return 0.5 * pos ** 2

def u4(pos): return 0.25 * pos ** 4

x = 0.0
delta = 0.1

data = []
n_samples = 10 ** 7
for i in range(n_samples):
    new_x = x + random.uniform(-delta, delta)
    delta_u2 = u2(new_x) - u2(x)
    delta_u4 = u4(new_x) - u4(x)
    if random.random() < min(1.0, math.exp(-delta_u2)) \
    * min(1.0, math.exp(-delta_u4)): x = new_x
    data.append(x)

plt.title('Factorized Metropolis algorithm, anharmonic oscillator' )
plt.xlabel('$x$')
plt.ylabel('$\pi(x)$')
plt.hist(data, bins=100, density=True,label='data')
XValues = []
YValues = []
for i in range(-1000,1000):
    x = i / 400.0
    XValues.append(x)
    YValues.append(math.exp(- u(x)) / 1.93525)
plt.plot(XValues, YValues, label='theory')
plt.legend(loc='upper right')
plt.show()


Further information

References

  • Tartero, G., Krauth, W., Concepts in Monte Carlo sampling, Am. J. Phys. 92, 65–77 (2024) arXiv:2309.03136
Personal tools