Markov ising.py
From Werner KRAUTH
(Difference between revisions)
Revision as of 21:31, 22 September 2015
import random, math L = 16 N = L * L nbr = {i : ((i // L) * L + (i + 1) % L, (i + L) % N, (i // L) * L + (i - 1) % L, (i - L) % N) \ for i in range(N)} nsteps = 1000000 T = 2.0 beta = 1.0 / T S = [random.choice([1, -1]) for k in range(N)] for step in range(nsteps): k = random.randint(0, N - 1) delta_E = 2.0 * S[k] * sum(S[nn] for nn in nbr[k]) if random.uniform(0.0, 1.0) < math.exp(-beta * delta_E): S[k] *= -1 print S, sum(S)