Factor Metropolis X2X4.py

From Werner KRAUTH

(Difference between revisions)
Jump to: navigation, search
Revision as of 22:42, 10 June 2024
Werner (Talk | contribs)

← Previous diff
Revision as of 06:59, 11 June 2024
Werner (Talk | contribs)

Next diff →
Line 1: Line 1:
 +==Context==
 +This page is part of my [[BegRohu_Lectures_2024|2024 Beg Rohu Lectures]] on "The second Markov chain revolution" at the [https://www.ipht.fr/Meetings/BegRohu2024/index.html Summer School] "Concepts and Methods of Statistical Physics" (3 - 15 June 2024).
 +
 +==Python program==
 +
 +
import math import math
import random import random
Line 35: Line 41:
plt.legend(loc='upper right') plt.legend(loc='upper right')
plt.show() plt.show()
 +
 +
 +==Further information==
 +==References==

Revision as of 06:59, 11 June 2024

Contents

Context

This page is part of my 2024 Beg Rohu Lectures on "The second Markov chain revolution" at the Summer School "Concepts and Methods of Statistical Physics" (3 - 15 June 2024).

Python program

import math
import random
import matplotlib.pyplot as plt

def u(x): return x ** 2 / 2.0 + x ** 4 / 4.0

def u2(pos): return 0.5 * pos ** 2

def u4(pos): return 0.25 * pos ** 4

x = 0.0
delta = 0.1

data = []
n_samples = 10 ** 7
for i in range(n_samples):
    new_x = x + random.uniform(-delta, delta)
    delta_u2 = u2(new_x) - u2(x)
    delta_u4 = u4(new_x) - u4(x)
    if random.random() < min(1.0, math.exp(-delta_u2)) \
    * min(1.0, math.exp(-delta_u4)): x = new_x
    data.append(x)

plt.title('Factorized Metropolis algorithm, anharmonic oscillator' )
plt.xlabel('$x$')
plt.ylabel('$\pi(x)$')
plt.hist(data, bins=100, density=True,label='data')
XValues = []
YValues = []
for i in range(-1000,1000):
    x = i / 400.0
    XValues.append(x)
    YValues.append(math.exp(- u(x)) / 1.93525)
plt.plot(XValues, YValues, label='theory')
plt.legend(loc='upper right')
plt.show()


Further information

References

Personal tools