Metropolis harmonic.py
From Werner KRAUTH
(Difference between revisions)
Revision as of 18:13, 19 February 2025 Werner (Talk | contribs) ← Previous diff |
Revision as of 18:14, 19 February 2025 Werner (Talk | contribs) (→Python program) Next diff → |
||
Line 4: | Line 4: | ||
==Python program== | ==Python program== | ||
import math, random | import math, random | ||
- | + | ||
def U(x): | def U(x): | ||
U = 0.0 | U = 0.0 | ||
Line 13: | Line 13: | ||
U += (x[k] - x_minus) ** 2 / 2.0 | U += (x[k] - x_minus) ** 2 / 2.0 | ||
return U | return U | ||
- | + | ||
N = 8 | N = 8 | ||
L = 16 | L = 16 | ||
delta = 1.0 | delta = 1.0 | ||
- | + | ||
+ | x = [L / N * k for k in range(N)] | ||
Iter = 1000000 | Iter = 1000000 | ||
for iter in range(Iter): | for iter in range(Iter): | ||
- | xstart = random.uniform(0.0, L) | + | k = random.randint(0, N - 1) # random slice |
- | xend = xstart + L | + | k_plus = (k + 1) % N |
- | x = [xstart] | + | k_minus = (k - 1) % N |
- | for k in range(1, N): # loop over internal slices | + | x_plus = x[k_plus] |
- | x_mean = ((N - k) * x[k - 1] + xend) / (1.0 + N - k) | + | if k == N - 1: x_plus += L |
- | sigma = math.sqrt(1.0 / (1.0 + 1.0 / (N - k) )) | + | if k_plus == N: x_plus = x[0] + L |
- | x.append(random.gauss(x_mean, sigma)) | + | x_minus = x[k_minus] |
+ | if k == 0: x_minus -= L | ||
+ | x_new = x[k] + random.uniform(-delta, delta) # new position at slice k | ||
+ | U_k = ((x_plus - x[k]) ** 2 + (x[k] - x_minus) ** 2) / 2.0 | ||
+ | U_kp = ((x_plus - x_new) ** 2 + (x_new - x_minus) ** 2) / 2.0 | ||
+ | if random.uniform(0.0, 1.0) < math.exp(- (U_kp - U_k)): x[k] = x_new | ||
x.append(xend) | x.append(xend) | ||
- | |||
==Further information== | ==Further information== |
Revision as of 18:14, 19 February 2025
Contents |
Context
This page is part of my 2025 Oxford Lectures
Python program
import math, random
def U(x): U = 0.0 for k in range(N): k_minus = (k - 1) % N x_minus = x[k_minus] if k == 0: x_minus -= L U += (x[k] - x_minus) ** 2 / 2.0 return U
N = 8 L = 16 delta = 1.0
x = [L / N * k for k in range(N)] Iter = 1000000 for iter in range(Iter): k = random.randint(0, N - 1) # random slice k_plus = (k + 1) % N k_minus = (k - 1) % N x_plus = x[k_plus] if k == N - 1: x_plus += L if k_plus == N: x_plus = x[0] + L x_minus = x[k_minus] if k == 0: x_minus -= L x_new = x[k] + random.uniform(-delta, delta) # new position at slice k U_k = ((x_plus - x[k]) ** 2 + (x[k] - x_minus) ** 2) / 2.0 U_kp = ((x_plus - x_new) ** 2 + (x_new - x_minus) ** 2) / 2.0 if random.uniform(0.0, 1.0) < math.exp(- (U_kp - U_k)): x[k] = x_new x.append(xend)
Further information
References
Krauth, W. XXX