Top to random eigenvalues.py
From Werner KRAUTH
Context
This page is part of my 2024 Beg Rohu Lectures on "The second Markov chain revolution" at the Summer School "Concepts and Methods of Statistical Physics" (3 - 15 June 2024).
Python program
import numpy as np import itertools import scipy.linalg as la def factorial(n): return 1 if n == 0 else (0 if n == 0 else factorial(n - 1) * n) for N in [2, 3, 4, 5, 6, 7]: FacN = factorial(N) ConfCopy = [0] * N print(N, 'N', FacN) # # Setup of transition matrix # P = np.zeros((FacN, FacN)) Conf = [k for k in range(N)] ConfList = list(itertools.permutations(Conf)) for Conf in ConfList: i = ConfList.index(tuple(Conf)) ConfCopy[:] = Conf a = ConfCopy.pop(0) for k in range(N): TargetConf = ConfCopy[0:k] + [a] + ConfCopy[k:N - 1] j = ConfList.index(tuple(TargetConf)) P[i][j] = 1.0 / float(N) eigvals, eigvecsl, eigvecsr = la.eig(P, left=True) eigvals.sort() stats = [0] * (N+1) for a in eigvals: index = int(N * a.real + 0.5) stats[index] += 1 print(stats)