Heat bath ising.py
From Werner KRAUTH
This page presents the program markov_disks_box.py, a Markov-chain algorithm for four disks in a square box of sides 1.
Contents |
Description
Program
import random L = [[0.25, 0.25], [0.75, 0.25], [0.25, 0.75], [0.75, 0.75]] sigma = 0.15 sigma_sq = sigma ** 2 delta = 0.1 n_steps = 1000 for steps in range(n_steps): a = random.choice(L) b = [a[0] + random.uniform(-delta, delta), a[1] + random.uniform(-delta, delta)] min_dist = min((b[0] - c[0]) ** 2 + (b[1] - c[1]) ** 2 for c in L if c != a) box_cond = min(b[0], b[1]) < sigma or max(b[0], b[1]) > 1.0 - sigma if not (box_cond or min_dist < 4.0 * sigma ** 2): a[:] = b print L
Version
See history for version information.
import random, math L = 6 N = L * L nbr = {i : ((i // L) * L + (i + 1) % L, (i + L) % N, (i // L) * L + (i - 1) % L, (i - L) % N) \ for i in range(N)} nsteps = 10000000 beta = 1.0 S = [random.choice([-1, 1]) for site in range(N)] E = -0.5 * sum(S[k] * sum(S[nn] for nn in nbr[k]) \ for k in range(N)) E_tot, E2_tot = 0.0, 0.0 random.seed('123456') for step in range(nsteps): k = random.randint(0, N - 1) Upsilon = random.uniform(0.0, 1.0) h = sum(S[nn] for nn in nbr[k]) Sk_old = S[k] S[k] = -1 if Upsilon < 1.0 / (1.0 + math.exp(-2.0 * beta * h)): S[k] = 1 if S[k] != Sk_old: E -= 2.0 * h * S[k] E_tot += E E2_tot += E ** 2 E_av = E_tot / float(nsteps) E2_av = E2_tot / float(nsteps) c_V = beta ** 2 * (E2_av - E_av ** 2) / float(N)