Metropolis harmonic.py
From Werner KRAUTH
Contents |
Context
This page is part of my 2025 Oxford Lectures
Python program
import math, random
def U(x):
U = 0.0
for k in range(N):
k_minus = (k - 1) % N
x_minus = x[k_minus]
if k == 0: x_minus -= L
U += (x[k] - x_minus) ** 2 / 2.0
return U
N = 8
L = 16
delta = 1.0
Iter = 1000000
for iter in range(Iter):
xstart = random.uniform(0.0, L)
xend = xstart + L
x = [xstart]
for k in range(1, N): # loop over internal slices
x_mean = ((N - k) * x[k - 1] + xend) / (1.0 + N - k)
sigma = math.sqrt(1.0 / (1.0 + 1.0 / (N - k) ))
x.append(random.gauss(x_mean, sigma))
x.append(xend)
Further information
References
Krauth, W. XXX
