Cluster ising.py
From Werner KRAUTH
This page presents the program markov_disks_box.py, a Markov-chain algorithm for four disks in a square box of sides 1.
Contents |
Description
Program
import random L = [[0.25, 0.25], [0.75, 0.25], [0.25, 0.75], [0.75, 0.75]] sigma = 0.15 sigma_sq = sigma ** 2 delta = 0.1 n_steps = 1000 for steps in range(n_steps): a = random.choice(L) b = [a[0] + random.uniform(-delta, delta), a[1] + random.uniform(-delta, delta)] min_dist = min((b[0] - c[0]) ** 2 + (b[1] - c[1]) ** 2 for c in L if c != a) box_cond = min(b[0], b[1]) < sigma or max(b[0], b[1]) > 1.0 - sigma if not (box_cond or min_dist < 4.0 * sigma ** 2): a[:] = b print L
Version
See history for version information.
import random, math L = 100 N = L * L nbr = {i : ((i // L) * L + (i + 1) % L, (i + L) % N, (i // L) * L + (i - 1) % L, (i - L) % N) for i in range(N)} T = 2.5 p = 1.0 - math.exp(-2.0 / T) nsteps = 10000 S = [random.choice([1, -1]) for k in range(N)] for step in range(nsteps): k = random.randint(0, N - 1) Pocket, Cluster = [k], [k] while Pocket != []: j = random.choice(Pocket) for l in nbr[j]: if S[l] == S[j] and l not in Cluster \ and random.uniform(0.0, 1.0) < p: Pocket.append(l) Cluster.append(l) Pocket.remove(j) for j in Cluster: S[j] *= -1