Enumerate ising.py

From Werner KRAUTH

Revision as of 21:39, 22 September 2015; view current revision
←Older revision | Newer revision→
Jump to: navigation, search

This page presents the program markov_disks_box.py, a Markov-chain algorithm for four disks in a square box of sides 1.


Contents

Description

Program

import random

L = [[0.25, 0.25], [0.75, 0.25], [0.25, 0.75], [0.75, 0.75]]
sigma = 0.15
sigma_sq = sigma ** 2
delta = 0.1
n_steps = 1000
for steps in range(n_steps):
    a = random.choice(L)
    b = [a[0] + random.uniform(-delta, delta), a[1] + random.uniform(-delta, delta)]
    min_dist = min((b[0] - c[0]) ** 2 + (b[1] - c[1]) ** 2 for c in L if c != a)
    box_cond = min(b[0], b[1]) < sigma or max(b[0], b[1]) > 1.0 - sigma
    if not (box_cond or min_dist < 4.0 * sigma ** 2):
        a[:] = b
print L

Version

See history for version information.


def gray_flip(t, N):
    k = t[0]
    if k > N: return t, k
    t[k - 1] = t[k]
    t[k] = k + 1
    if k != 1: t[0] = 1
    return t, k

L = 4
N = L * L
nbr = {i : ((i // L) * L + (i + 1) % L, (i + L) % N,
            (i // L) * L + (i - 1) % L, (i - L) % N)
                                    for i in range(N)}
S = [-1] * N
E = -2 * N
print S, E
tau = range(1, N + 2)
for i in range(1, 2 ** N):
    tau, k = gray_flip(tau, N)
    h = sum(S[n] for n in nbr[k - 1])
    E += 2 * h * S[k - 1]
    S[k - 1] *= -1
    print S, E
Personal tools