Enumerate ising.py
From Werner KRAUTH
This page presents the program markov_disks_box.py, a Markov-chain algorithm for four disks in a square box of sides 1.
Contents |
Description
Program
import random L = [[0.25, 0.25], [0.75, 0.25], [0.25, 0.75], [0.75, 0.75]] sigma = 0.15 sigma_sq = sigma ** 2 delta = 0.1 n_steps = 1000 for steps in range(n_steps): a = random.choice(L) b = [a[0] + random.uniform(-delta, delta), a[1] + random.uniform(-delta, delta)] min_dist = min((b[0] - c[0]) ** 2 + (b[1] - c[1]) ** 2 for c in L if c != a) box_cond = min(b[0], b[1]) < sigma or max(b[0], b[1]) > 1.0 - sigma if not (box_cond or min_dist < 4.0 * sigma ** 2): a[:] = b print L
Version
See history for version information.
def gray_flip(t, N): k = t[0] if k > N: return t, k t[k - 1] = t[k] t[k] = k + 1 if k != 1: t[0] = 1 return t, k L = 4 N = L * L nbr = {i : ((i // L) * L + (i + 1) % L, (i + L) % N, (i // L) * L + (i - 1) % L, (i - L) % N) for i in range(N)} S = [-1] * N E = -2 * N print S, E tau = range(1, N + 2) for i in range(1, 2 ** N): tau, k = gray_flip(tau, N) h = sum(S[n] for n in nbr[k - 1]) E += 2 * h * S[k - 1] S[k - 1] *= -1 print S, E