Diffusion CFTP.py
From Werner KRAUTH
Context
This page is part of my 2024 Beg Rohu Lectures on "The second Markov chain revolution" at the Summer School "Concepts and Methods of Statistical Physics" (3 - 15 June 2024).
Python program
import random import matplotlib.pyplot as plt N = 5 pos = [] for stat in range(100000): all_arrows = {} time_tot = 0 while True: time_tot -= 1 arrows = [random.choice([-1, 0, 1]) for i in range(N)] if arrows[0] == -1: arrows[0] = 0 if arrows[N - 1] == 1: arrows[N - 1] = 0 all_arrows[time_tot] = arrows positions=set(range(0, N)) for t in range(time_tot, 0): positions = set([b + all_arrows[t][b] for b in positions]) if len(positions) == 1: break a = positions.pop() pos.append(a) plt.title('Backward coupling: 1-d with walls: position at t=0') plt.hist(pos, bins=N, range=(-0.5, N - 0.5), density=True) plt.savefig('backward_position_t0.png') plt.show()