Metropolis X2X4.py
From Werner KRAUTH
import math import random import matplotlib.pyplot as plt def u(x): return x ** 2 / 2.0 + x ** 4 / 4.0 x = 0.0 delta = 0.1 data = [] n_samples = 10 ** 6 for i in range(n_samples): new_x = x + random.uniform(-delta, delta) delta_u = u(new_x) - u(x) if random.random() < math.exp(-delta_u): x = new_x data.append(x) plt.title('Metropolis algorithm, anharmonic oscillator' ) plt.xlabel('$x$') plt.ylabel('$\pi(x)$') plt.hist(data, bins=100, density=True,label='data') XValues = [] YValues = [] for i in range(-1000,1000): x = i / 400.0 XValues.append(x) YValues.append(math.exp(- u(x)) / 1.93525) plt.plot(XValues, YValues, label='theory') plt.legend(loc='upper right') plt.show()