From Werner KRAUTH
import math
import random
import matplotlib.pyplot as plt
def u(x): return x ** 2 / 2.0 + x ** 4 / 4.0
x = 0.0
time_ev = 0.0
sigma = 1 if x <= 0.0 else -1
data = []
n_samples = 10 ** 6
while len(data) < n_samples:
delta_u = -math.log(random.random())
new_x = sigma * math.sqrt(-1.0 + math.sqrt(1.0 + 4.0 * delta_u))
new_time_ev = time_ev + abs(new_x - x)
for t in range(math.ceil(time_ev), math.floor(new_time_ev) + 1):
data.append(x + sigma * (t - time_ev))
x = new_x
time_ev = new_time_ev
sigma *= -1
plt.title('Zig-Zag algorithm, anharmonic oscillator')
plt.xlabel('$x$')
plt.ylabel('$\pi(x)$')
plt.hist(data, bins=100, density=True, label='data')
XValues = []
YValues = []
for i in range(-1000,1000):
x = i / 400.0
XValues.append(x)
YValues.append(math.exp(- u(x)) / 1.93525)
plt.plot(XValues, YValues, label='theory')
plt.legend(loc='upper right')
plt.show()