Metropolis X2X4.py
From Werner KRAUTH
Revision as of 13:48, 11 June 2024; view current revision
←Older revision | Newer revision→
←Older revision | Newer revision→
Contents |
[edit]
Context
This page is part of my 2024 Beg Rohu Lectures on "The second Markov chain revolution" at the Summer School "Concepts and Methods of Statistical Physics" (3 - 15 June 2024).
[edit]
Python program
import math import random import matplotlib.pyplot as plt def u(x): return x ** 2 / 2.0 + x ** 4 / 4.0 x = 0.0 delta = 0.1 data = [] n_samples = 10 ** 6 for i in range(n_samples): new_x = x + random.uniform(-delta, delta) delta_u = u(new_x) - u(x) if random.random() < math.exp(-delta_u): x = new_x data.append(x) plt.title('Metropolis algorithm, anharmonic oscillator' ) plt.xlabel('$x$') plt.ylabel('$\pi(x)$') plt.hist(data, bins=100, density=True,label='data') XValues = [] YValues = [] for i in range(-1000,1000): x = i / 400.0 XValues.append(x) YValues.append(math.exp(- u(x)) / 1.93525) plt.plot(XValues, YValues, label='theory') plt.legend(loc='upper right') plt.show()
[edit]
Further information
[edit]
References
- Tartero, G., Krauth, W. Concepts in Monte Carlo sampling, Am. J. Phys. 92, 65–77 (2024) arXiv:2309.03136