Factor ZigZag X2X4.py
From Werner KRAUTH
Revision as of 13:50, 11 June 2024; view current revision
←Older revision | Newer revision→
←Older revision | Newer revision→
Contents |
[edit]
Context
This page is part of my 2024 Beg Rohu Lectures on "The second Markov chain revolution" at the Summer School "Concepts and Methods of Statistical Physics" (3 - 15 June 2024).
[edit]
Python program
import math
import random
import matplotlib.pyplot as plt
def u(x):
return x ** 2 / 2.0 + x ** 4 / 4.0
x = 0.0
time_ev = 0.0
sigma = 1 if x <= 0.0 else -1
data = []
n_samples = 10 ** 6
while len(data) < n_samples:
delta_u2 = -math.log(random.uniform(0.0, 1.0))
delta_u4 = -math.log(random.uniform(0.0, 1.0))
new_x2 = math.sqrt(2.0 * delta_u2)
new_x4 = (4.0 * delta_u4) ** 0.25
new_x = sigma * min(abs(new_x2), abs(new_x4))
new_time_ev = time_ev + abs(new_x - x)
for t in range(math.ceil(time_ev), math.floor(new_time_ev) + 1):
data.append(x + sigma * (t - time_ev))
x = new_x
time_ev = new_time_ev
sigma *= -1
plt.title('Factor-Zig-Zag algorithm, anharmonic oscillator')
plt.xlabel('$x$')
plt.ylabel('$\pi(x)$')
plt.hist(data, bins=100, density=True, label='data')
XValues = []
YValues = []
for i in range(-1000,1000):
x = i / 400.0
XValues.append(x)
YValues.append(math.exp(- u(x)) / 1.93525)
plt.plot(XValues, YValues, label='theory')
plt.legend(loc='upper right')
plt.show()
[edit]
Further information
[edit]
References
- Tartero, G., Krauth, W. Concepts in Monte Carlo sampling, Am. J. Phys. 92, 65–77 (2024) arXiv:2309.03136
