From Werner KRAUTH
import math
import random
L = 64; N = L * L
nbr = {i : ((i // L) * L + (i + 1) % L, (i + L) % N,
(i // L) * L + (i - 1) % L, (i - L) % N) \
for i in range(N)}
beta = 0.4 # beta = 0.4407 is critical temperature
SLow = [-1 for site in range(N)]
SHigh = [1 for site in range(N)]
iter = 0
while True:
iter += 1
k = random.randint(0, N - 1)
Upsilon = random.uniform(0.0, 1.0)
hLow = sum(SLow[nn] for nn in nbr[k])
hHigh = sum(SHigh[nn] for nn in nbr[k])
SLow[k] = -1
if Upsilon < 1.0 / (1.0 + math.exp(-2.0 * beta * hLow)):
SLow[k] = 1
SHigh[k] = -1
if Upsilon < 1.0 / (1.0 + math.exp(-2.0 * beta * hHigh)):
SHigh[k] = 1
if SHigh == SLow:
print(iter / N)
print(SLow, SHigh)
break