Diffusion CFTP coupl pos.py
From Werner KRAUTH
[edit]
Context
This page is part of my 2024 Beg Rohu Lectures on "The second Markov chain revolution" at the Summer School "Concepts and Methods of Statistical Physics" (3 - 15 June 2024).
[edit]
Python program
import random import matplotlib.pyplot as plt N = 5 pos = [] for stat in range(100000): all_arrows = {} time_tot = 0 while True: time_tot -= 1 arrows = [random.choice([-1, 0, 1]) for i in range(N)] if arrows[0] == -1: arrows[0] = 0 if arrows[N - 1] == 1: arrows[N - 1] = 0 all_arrows[time_tot] = arrows positions=set(range(0, N)) for t in range(time_tot, 0): positions = set([b + all_arrows[t][b] for b in positions]) if len(positions) == 1: break if len(positions) == 1: break a = positions.pop() pos.append(a) plt.title('Backward coupling: 1-d with walls: position at coupling time') plt.hist(pos, bins=N, range=(-0.5, N - 0.5), density=True) plt.savefig('backward_coupling_position.png') plt.show()