Dress Krauth 1995
From Werner KRAUTH
C. Dress, W. Krauth Cluster Algorithm for hard spheres and related systems Journal of Physics A: Math. Gen. 28, L597 (1995)
Abstract: In this paper, we present a cluster algorithm for the simulation of hard spheres and related systems. In this algorithm, a copy of the configuration is rotated with respect to a randomly chosen pivot point. The two systems are then superposed, and clusters of overlapping spheres in the joint system are isolated. Each of these clusters can be flipped independently, a process which generates non-local moves in the original configuration. A generalization of this algorithm (which works perfectly well at small density) can be successfully made to work at densities around the solid-liquid transition point in the two-dimensional hard-sphere system.
Further insights
In the original version, we formulated the algorithm as an exchange between two copies of a configuration. The "pocket" version of the algorithm, that I also used, with R. Moessner, in a 2003 paper on dimer models, is much easier. This pocket version that is implemented in the below Python program.
Python version of the cluster algorithm
###========+=========+=========+=========+=========+=========+=========+=
## PROGRAM : pocket_disks.py
## PURPOSE : implement SMAC algorithm 2.18 (hard-sphere-cluster)
## for four disks in a square of sides 1
## LANGUAGE: Python 2.5
##========+=========+=========+=========+=========+=========+=========+
from random import uniform as ran, choice
def box_it(x):
x[0]=x[0]%1.
if x[0] < 0 : x[0]=x[0]+1
x[1]=x[1]%1.
if x[1] < 0 : x[1]=x[1]+1
return x
def dist(x,y):
d_x= abs(x[0]-y[0])%1
d_x = min(d_x,1-d_x)
d_y= abs(x[1]-y[1])%1
d_y = min(d_y,1-d_y)
return d_x**2 + d_y**2
def T(x,Pivot):
x=(2*Pivot[0]-x[0],2*Pivot[1]-x[1])
return x
#
# Program starts here
#
Others=[(0.25,0.25),(0.25,0.75),(0.75,0.25),(0.75,0.75)]
sigma_sq=0.15**2
for iter in range(10000):
a = choice(Others)
Others.remove(a)
Pocket = [a]
Pivot=(ran(0,1),ran(0,1))
while Pocket != []:
a = choice(Pocket)
Pocket.remove(a)
a = T(a,Pivot)
for b in Others[:]: # "Others[:]" is a copy of "Others"
if dist(a,b) < 4*sigma_sq:
Others.remove(b)
Pocket.append(b)
Others.append(a)
print Others, ' ending config '
