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These lecture notes have been prepared for a series of course in a master in Lyon (France), and
other teaching in Beijing (China) and Tokyo (Japan). It consists in a short introduction to message
passing algorithms and in particular Belief propagation, using a statistical physics formulation. It
is intended as a first introduction to such ideas which start to be now widely used in both physics,
constraint optimization, Bayesian inference and quantitative biology. The reader interested to pursur
her journey beyond these notes is refer to [1].

I. WHY STATISTICAL PHYSICS ?

Why should we speak about statistical physics in this lecture about complex systems?

A. Physics

First of all, because of physics itself. Statistical physics is a fondamental tool and one of the most formidable success
of modern physics. Here, we shall however use it only as a probabilist toolbox for other problems. It is perhaps better
to do a recap before we start.

In statistical physics, we consider N discrete (not always, actually, but for the matter let us assume discrete)
variables σi and a cost function H({σ}) which we call the Hamiltonian.

We introduce the temperature T (and the inverse temperature β = 1/T and the idea is that each configurations,
or assignments, of the variable ({σ}) has a weight e−βH({σ}), which is called the Boltzmann weight.

It is convenient to introduce the following function, called the partition sum:

Z(β) =
∑

{σ}

e−βH({σ}) (1)

One can compute average quantities of basically any quantity A({σ}) that depends on the ({σ}) with respect to the
Boltzmann measure as:

< A(β) >=
1

Z(β)

∑

{σ}

A({σ})e−βH({σ}) (2)

Of particular importance is the average of the Hamiltonian itself, which is called the energy

E(β) =< H >=
1

Z(β)

∑

{σ}

H({σ})e−βH({σ}) (3)

It is customary to introduce the so-called free energy

F (β) = −
1

β
logZ(β) (4)

Indeed, one can obtain the energy directly from the free energy as

E(β) =
∂βF (β)

∂β
(5)

Another important quantity is the entropy which reads.

S(β) = −β(F (β) − E(β)) =
∂F (T )

∂T
(6)
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These quantities called free energy, energy, entropy, etc. . . have an interest of their own in statistical physics.
However, we shall see that they are interesting as well in other contexts. For instance, it is important to notice that
the zero temperature limit (when β → ∞) of the energy give the value of the minimum of the Hamiltonian (which is
called the ground state energy in physics):

lim
β→∞

E(β) = min
{σ}

H({σ}) (7)

while the entropy at zero temperature give us the (logarithm of the) number of configuration Ω of {σ} with this
precise value of the cost function.

lim
β→∞

S(β) = log Ω (8)

B. Constraint Satisfaction Problems

The last statement allow to see the connection with combinatorial optimization: finding the minimal value of a
function of discrete variable, and the corresponding number of assignment means simply computing the ground-state
energy (the zero temperature energy) and entropy of the associated statistical physics model! If we know how to solve
the statistical physics model, we know the value of the best assignment!

Let us consider an example: the Coloring problem. We need to color a graph with q colors such that two neighboring
nodes have a different color. The coloring problem was introduced by Francis Guthrie in 1852 when he was working on
coloring of map, and notice that all maps (that is, all planar graphs!) can be colored with 4 colors. The corresponding
4-color theorem, was however only proven in 1976 by Kenneth and Appel [2, 3].

For a generic graph G (that is, a non planar one) however, deciding if it is colorable with q color (that is, if the
chromatic number χG ≤ q) is a NP-complete problem as soon as q > 2.

Let us now make the connection with statistical physics. The problem is equivalent to finding the ground state of
the so called Potts anti-ferromagnet on this graph, a problem with Hamiltonian (or cost function):

H =
∑

ij∈G

δsi, sj with si = 1, . . . , q (9)

If one can solve the statistical physics problem, and compute Z(β), then if the zero temperature energy is zero, the
graph is colorable, and the entropy allows to obtain the number of such solutions... of course, it is usually not simple
to compute the partition sum (in fact, it is generically a problem which is much harder than NP complete).

Another important point is that one can also use some method borrowed from statistical physics: simulated an-
nealing [4] is for instance one of the most cited paper in computer science. Of course the famous K-SAT is another
example where this approach can be applied [5].

C. Bayesian inference

Another example of application of the ideas of statistical physics is given by the field of Bayesian inference, or
machine learning [6]. It is a method of statistical inference in which some observations are used to calculate the
probability that an hypothesis may be true, or else to update its previously-calculated probability and to compute its
most probable value.

Consider the following example: We have a disease which is connected with some 3 symptoms. A contaminated
individual may display these symptoms with probability p11, p12, p13 while a healthy one will display them with
probability p01, p02, p03. We have a list of patient and we know if they display these symptom or not, and the goal is
to estimate these set of probabilities {p}.

A simple way to do would be to maximize the probability of the parameter given that we observe such a graph of
connections (see fig.1). So we want to consider P ({p}|G). Unfortunately, we do not know any expression to do so.
However, we could use Bayes theorem and write

P ({p}|G) = P (G|{p})
P ({p})

P (G)
=
∑

{S}

P ({p})

P (G)
P (G, {S}|{p}) (10)

where the sum over {S} is over all the possible assignments for each individual (S1 = 1 means the individual 1 is sane,
while S1 = 0 means he is sick). It is often assumed that P (G) and P ({p}) are a priori unknown, so that we should
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use them basically as normalization constant. In fact the prior probability P ({p}) includes all graph independent
information about the values of the parameters. With our definition of the problem, that is inference of parameters
from the topology of the graph, we have no such prior information. The prior probability P (G) does not depend on
the values of parameters, so we realize that maximizing P ({p}|G) over {p} is equivalent to maximizing the following
partition sum (which is called the evidence in Bayesian inference):

Z({p}) =
∑

{S}

P (G, {S}|{p}) (11)

At this point the connection with statistical physics is evident! It is even stronger when one write explicitly the
P (G, {S}|{p}), since indeed:

P (G, {S}|{p}) =
∏

ij

[

p
Gij

si,j
(1 − psi,j)

1−Gij

]

(12)

where the indice i is for all individual, and the value j for all symptoms, and where Gij = 1 if there is indeed a link
between i and j, and zero otherwise. One can rewrite the weight as follow to obtain the connection with statistical
physics with an equivalent Hamiltonian

P (G, {S}|{p}) = exp





∑

ij

(Gij log (pς,j) + (1 − Gij) log (1 − pς,j)



) (13)

s7s1 s2

f1 f2 f3

s3 s4 s5 s6

FIG. 1: Example of an inference problem represented by a factor graph.

Again, we see that the ability to compute a partition sum is very useful, as it allows to do Bayesian inference (where
here we should use β = 1 in order to recover the statistical physics setting).
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II. RECURSIONS ON A FINITE TREE: THE FERROMAGNETIC EXAMPLE

Computing a partition sum is hard! With N variable, we have a sum of exponentially many elements . However,
pretty much any model or Hamiltonian can be solve exactly on tree, in a time linear in N . This is actually used in
many different fields of science with various names (Bethe-Peierls in physics, or cavity method, Belief-Propagation in
machine learning and artificial intelligence, or Sum-Product in coding theory). We shall here stick to the physicists
notation, but refer to the algorithm as Belief Propagation [7].

A note of warning with respect to what can be find in the literature: We will for the moment restrict to consider
models where the clauses have connectivity k = 2: for these models, one does not need a factor graph representation,
since interactions can be represented by a standard graph with vertices i = 1, · · · , N representing variables σi and
links 〈i, j〉 representing interactions ψij(σi, σj). We shall repeatedly use in the following the same notation we used
for factor graphs, specialized to the k = 2 case: therefore we use ∂i for the set of vertices adjacent to a given vertex
i, i.e. for the sites which interact with i, and ∂i \ j for those vertices around i distinct from j.

We shall consider for pedagogical purpose what is called ferromagnetic model in the physics literature.

1. A single spin in a field

h0

S0

FIG. 2: One spin in a field.

We consider a single spin in a field. The Hamiltonian is

H = −h0S0 (14)

Let us solve the problem. We denote the total partition sum Z(β), which simply reads

Z(β) =
∑

S0

eβh0S0 = 2 cosh(βh0) (15)

It is in fact interesting to define a partition sum when S0 is fixed. In this case

Z0(β, S0) = eβh0S0 (16)

and Z = Z0(+) + Z0(−) (17)

The energy is given by E(β) = −h0 tanhβh0 and it gives at zero temperature E(T = 0) = −h0 at it should. The
average value of the spin is given by

m(β) =
1

Z(β)

∑

S0

S0e
βh0S0 =

Z0(+) − Z0(−)

Z0(+) + Z0(−)
= tanh(βh0) (18)

From this, we know the probability to be plus (η+ = 1+m
2 ) and to be minus (η− = 1−m

2 ).
This is a trivial example but there is an important comment to be made here. Note that for such a single random

variable, one can specify either m, η± or h0: this is completely equivalent! Of course, it is more physicists who like
to use the field notation, but it is actually often very practical for computations.
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h0

S0 S1 S1

u1

FIG. 3: Two spins in a field...

2. Adding one spin

We now add a new spin and we obtain the new Hamiltonian:

H = −h0S0 − JS0S1 (19)

How to compute Z for this new problem? We again introduce a partial partition sum Z1(S1) which tell us what is
the partition sum of the total system when S1 is fixed). We find:

Z1(+) =
∑

S0

e−βH = eβh0eβJ + e−βh0e−βJ (20)

Z1(−) =
∑

S0

e−βH = eβh0e−βJ + e−βh0eβJ (21)

(22)

Of course, Z = Z1(+) + Z1(−). Interestingly, we recover here a factor e±βh0 which was the partial partition sum
of the spin S0 before we added the new spin S1! In the context of this new problem, with Hamiltonian 19 we shall
call this partial partition sum where S1 is not present Z0→1(S0) (and we shall now reserve the notation Z0(S0) for
the partial partition sum of the variable (S0) with the new Hamiltonian 19. Note that now Z0(S0) is different from
2 cosh(βh0) because of the interaction with the new spin.). Denoting therefore Z0→1(S0) = eβh0S0 we that

Z1(S1) =
∑

S0

Z0→1(S0)e
βJS0S1 (23)

= eβh0eβJS1 + e−βh0e−βJS1 (24)

We see that the partial partition sum of the new spin S1 can be express as a simple function of the partition sum of
S0 before S1 was introduced! This is typical of the kind of equation we shall see in the following. This recursion is in
fact the root of the BP equation.

In fact, a different —but equivalent— recursion can be written if one is interested in the average values of variables
instead of the partition sum. What is the average value of the new spin S0? As before, we want to use a physicist
notation and we wrote

m1 =< S1 >= tanh(βu1) (25)

This is a definition of u1. This is to say that the spin 1 acts as if it is alone in a field u1. We have, using either 22 or
24

tanh(βu1) =
Z1(+) − Z1(−)

Z1(+) + Z1(−)
= tanhβJ tanhβh0. (26)

At this point something miraculous has happened: The new spin is acting as if it is alone, without any interaction
with the other spin 0, expect that it is in an effective field given by the recursion 26. As we see, a recursion can be
written for the field. Going back to the average value of the variable, we obtain

m1 = tanhβJm0→1 (27)

where m0→1 the average magnetization of the variable 0 when variable 1 is not (yet) present. Note that m0→1 might
be different from m0 in the two spins problems, so one should not confuse the two! Finally, for the more probabilistic
reader, we could note the recursion as:

η1(+) = 2 ∗ tanh(βJ)(1 + η0→1) − 1 (28)
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In the physicist jargon, we denote the quantities with indice 0 → 1 that denote averages when the link between
0 and 1 is not present , as cavity quantity, as we are somehow making a cavity in the system and consider only a
sub-system. m0→1 is for instance the cavity magnetization.

The very basic point of BP is to write a recursion for these cavity variables.

3. A third spin...

We add a again new spin called S2 and we have the new Hamiltonian:

H = −h0S0 − JS0S1 − JS1S2 (29)

Let us proceed as before: we have just computed the value of the partition sum of spin 1 when S2 was not (yet)
present and now denote this Z0→2(S0)) in the new context of Hamiltonian 29. Clearly, the new partition sum when
S2 is fixed is simply given by

Z(S2) =
∑

S1

Z1→2(S1)e
βJS1S2 (30)

and it can be computed right away as soon as Z1→2(S1) is known! We see that any time we add a new spin, only a
single operation is needed to compute the new partition sum, and this is faster than the use of the original formula.

In terms of field, one can repeat the previous argument, and argue that the new field S2 is basically acting as if it
was isolated, but in a field u2 given by

tanh(βu2) = tanhβJ tanhβu1→2 = (tanhβJ)2 tanhβh0 (31)

4. The 1D Ising chain

Now, we can have a first idea of what these iterations can do for us: let us consider a very long chain of N spins,
with Hamiltonian:

H = −h1S1 − J
N−1
∑

i=1

SiSi+1 (32)

The partition sum when the last spin is fixed is simply given by

Z(SN) =
∑

SN−1

ZN−1→N(SN − 1)eβJSNSN−1 (33)

so that one just need to compute a new operation anytime one add a new spin to compute the partition sum. This
can be done in O(N) operation, to be compare with the costly 2N evaluation if one uses the definition of the partition
sum: for such a chain, we went from exponential to linear!

The same can be done if we focus on the average value as well. Repeating the previous argument, we can obtain
that the last variable behave as if in a field uN where

tanhβuN = tanhβh1 (tanhβJ)N−1 (34)

Or equivalently

mN = tanhβh1 (tanhβJ)
N−1

(35)

In particular, since tanhβJ ≤ 1 at finite temperature, we immediately see that the magnetization will be zero far
enough from the first spin, so that there is no ordered phase (in accord with the well known fact that there is no
ordered phase at finite temperature in one dimension).
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S0

S1 S2

S0

h0=u1+u2

FIG. 4: The simplest tree . . .

5. A basic recursion on a proto-tree

This is all nice and well, but chains are pretty limited. Can we do better? In fact we can, let us move to the
following situation with 3 spins:

H = −h1S1 − h2S2 − JS0S1 − JS0S2 (36)

We shall apply the very same strategy and write the partition sum for Z0. We find:

Z0(S0) =
∑

S1,S2

e−βH(S0) =
∑

S1,S2

eβh1S1+βh2S2+βJS0S1+βJS0S2 (37)

=
∏

i=1,2

[

∑

Si

eβhiSi+βJS0Si

]

(38)

=
∏

i=1,2

[

∑

Si

Zi→0(Si)e
βJS0Si

]

=
∏

i=1,2

Z0i(S0) (39)

This factorization we just did is really convenient, and in particular we again see that we could wrote the recursion
using or notation Zi→0(Si), just as before! This is the root of the BP recursion we are about to write!

The expression is also very convenient in order to write the effective field h0 on S0 such that S0 = tanhβh0 so that

< S0 >= tanh(βh0) =
eβh0 − e−βh0

eβh0 + e−βh0

=
Z0(+) − Z0(−)

Z0(+) + Z0(−)
(40)

If we define ui by h0 =
∑

i ui we see immediately that a solution is given by

e
P

i
βui − e−

P

i
βui

e
P

i
βui + e−

P

i
βui

=

∏

i e
βui −

∏

i e
−βui

∏

i e
βui +

∏

i e
−βui

=

∏

i Z0i(+) −
∏

i Z0i(−)
∏

i Z0i(+) +
∏

i Z0i(−)
(41)

Given what we have done for one spin with one neighbors, we thus must satisfy

e±βui ∝
∑

Si

e±βhie±βJSi (42)

We know the solution to this problem, since it is the one with two spins! It is simply

tanh(βui) = tanhβJ tanhβhi. (43)

And we thus find that the following result, which in fact holds for more than two spins:

βh0 =
∑

i

atanh (tanhβJ tanhβhi) (44)

This can be interpreted as a message passing algorithm on any tree, if one interpret, as before, this Z0 as being in
fact a Z0→4 upon the addition of a new variable 4.
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6. Application: the solution of the ferromagnet on an infinite tree

A first application is the solution of the ferromagnetic Ising model on an infinite tree with connectivity k (this is
an approximation [8]of the finite dimensional problem in physics where 2d = k + 1.) We have simply the fixed point:

βh = katanh (tanhβJ tanhβh) (45)

m = tanh [katanh (tanhβJm)] (46)

(47)

Let us see how it works: these are the value it predicts for βc compares with the correct one:

TABLE I: Gaussian couplings: critical exponent in MK and in 2D

d Bethe tree A lattice in finite dimension

1 0 0

2 0.346 0.44

3 0.203 0.221

4 0.144 0.149

5 0.112 0.114

TABLE II: Critical β

It is really a good approximation! We see also that we can interpret these equations as message passing on trees!
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III. GENERIC EQUATIONS FOR BELIEF PROPAGATION

We are now ready to write the BP recursion [1]. Let us do it for any kind of interaction involving two variables,
where the interaction graph is a tree. Following what we have done, we define the quantity Zi→j(σi), for two adjacent
sites i and j, as the partial partition function for the subtree rooted at i, excluding the branch directed towards j,
with a fixed value of the spin variable on the site i. We also introduce Zi(σi), the partition function of the whole tree
with a fixed value of σi. These quantities can be computed according to the following recursion rules, see Fig. 5 for
an example,

Zi→j(σi) =
∏

k∈∂i\j

(

∑

σk

Zk→i(σk)ψik(σi, σk)

)

, Zi(σi) =
∏

j∈∂i





∑

σj

Zj→i(σj)ψij(σi, σj)



 . (48)

This is the cavity recursion for partition sums.
We saw that it was also possible to write recursion in terms of probabilities. Let us thus rewrite these equations in

terms of normalized quantities which can be indeed interpreted as probability laws for the random variable σi, namely
ηi→j(σi) = Zi→j(σi)/

∑

σ′ Zi→j(σ
′) and ηi(σi) = Zi(σi)/

∑

σ′ Zi(σ
′). The recursion equations read in these notations

ηi→j(σi) =
1

zi→j

∏

k∈∂i\j

(

∑

σk

ηk→i(σk)ψik(σi, σk)

)

, ηi(σi) =
1

zi

∏

j∈∂i





∑

σj

ηj→i(σj)ψij(σi, σj)



 , (49)

where zi→j and zi are normalization constants:

zi→j =
∑

σi

∏

k∈∂i\j

(

∑

σk

ηk→i(σk)ψik(σi, σk)

)

, zi =
∑

σi

∏

j∈∂i





∑

σj

ηj→i(σj)ψij(σi, σj)



 , (50)

Since the leaves are isolated when the link connecting them is removed, one has Zi→j(σi) =const. and ηi→j(σi) =const.
for leaves. However, one can also choose to put an arbitrary ηi→j(σi) on the leaves: this might represent an external
field acting on them, or the effect of a given boundary condition. Moreover the quantity ηi(σi) is exactly the
marginal probability law of the Gibbs-Boltzmann distribution, hence the local magnetizations can be computed as
mi = 〈σi〉 =

∑

σ ηi(σ)σ. Then, on a given tree the recursion equations on the ηi→j for all directed edges of the graph
have a single solution, easily found by propagating the recursion from the leaves of the graph.

σ1

σ2

σ3σ4

σ5 σ6 σ7

FIG. 5: Example of an Ising tree model on 7 vertices. The definition of Z2→1 and its recursive computation reads here:
Z2→1(σ2) =

P

σ3,...,σ7

ψ23(σ2, σ3)ψ24(σ2, σ4)ψ45(σ4, σ5)ψ46(σ4, σ6)ψ47(σ4, σ7) =
P

σ3,σ4

Z3→2(σ3)Z4→2(σ4)ψ23(σ2, σ3)ψ24(σ2, σ4).

The reader might complain that with these new notation, one could not compute the partition sum. In fact, it is
perfectly possible: we can write the free energy of the system as a fonction of the cavity probabilities. For this it is
useful to first define the object

zij =
∑

σi,σj

ηj→i(σj)ηi→j(σi)ψij(σi, σj) =
zj

zj→i

=
zi

zi→j

, (51)
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where the last two equalities are easily derived using Eqs. 49. Indeed, the total partition function is

Z = zi

∏

j∈∂i

zj→i

∏

k∈∂j\i

zk→j · · · = zi

∏

j∈∂i

zj

zij

∏

k∈∂j\i

zk

zjk

· · · =

∏

i zi
∏

〈i,j〉 zij

(52)

and the free energy is

F = −T logZ =
∑

i

fi −
∑

〈i,j〉

fij ,

fi = −T log zi ,

fij = −T log zij .

(53)

This is the full form of BP for any graph with two body interactions.
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IV. RANDOM GRAPHS AND HYPER-GRAPHS

The common notion of computational complexity, being based on worst-case considerations, could overlook the
possibility that “most” of the instances of an NP problem are in fact easy and that the difficult cases are very rare.
Random ensembles of problems have thus been introduced in order to give a quantitative content to this notion of
typical instances; a property of a problem will be considered as typical if its probability (with respect to the random
choice of the instance) goes to one in the limit of large problem sizes. Of course the choice of a distribution over
the instances is arbitrary and could not reflect the properties of the instances that relevant for a given practical
application. Still, the introduction of a distribution over the instances allows to formulate the problem in terms of
the statistical mechanics of a spin-glass-like model. We will see that this formulation provides important insight in
the properties of difficult instances of these problems.

An instance of a random CSP is defined by two objects: the underlying factor graph and, as in fully connected
models, the set of couplings J appearing in the constraints (e.g. the right hand side of an equation in XORSAT).
Both the factor graph and the couplings can be taken as random variables to define a probability distribution over
instances. Recall that we have N variable nodes and M constraint nodes. In the statistical mechanics approach
we will be interested in the thermodynamic limit of large instances where N and M both diverge with a fixed ratio
α = M/N .

Among many possible ensembles of graphs, two have been investigated in great detail:

• Random regular graphs (or fixed connectivity): each constraint involves k distinct variables (k is a free parameter
for (XOR)SAT and k = 2 for COL), and each variable enters in exactly c different constraints. Uniform
probability is given to all graphs satisfying this property. Note that one must have Mk = Nc, i.e. c = kM/N =
kα.

• Erdös-Rényi random graphs: For each of the M clauses a a k(≥ 2)-uplet of distinct variable indices (i1a, . . . , i
k
a)

is chosen uniformly at random among the
(

N
k

)

possible ones. For large N,M the degree of a variable node of

the factor graph converges to a Poisson law1 of average αk. To compare with regular graphs we shall use the
notation c = kα for the average connectivity.

In principle one might allow also the connectivity of the constraints to be a random variable but we do not discuss
such case here. Note that the limit c → ∞ with a proper scaling of the couplings gives back the fully connected
model. In this limit, the fluctuations of c in Erdös-Rényi graphs can be neglected and the two ensembles of graph are
equivalent.

Random (hyper)graphs have many interesting properties in this limit. In particular, picking at random one variable
node i and isolating the subgraph induced by the variable nodes at a graph distance smaller than a given constant
L yields, with a probability going to one in the thermodynamic limit, a (random) tree. This tree can be described
by a Galton-Watson branching process: the root i belongs to l constraints, where l is a Poisson random variable of
parameter αk (or l = αk in the fixed connectivity case). The variable nodes adjacent to i give themselves birth to new
constraints, in numbers which are independently Poisson distributed with the same parameter. This reproduction
process is iterated on L generations, until the variable nodes at graph distance L from the initial root i have been
generated.

The algorithm to construct Erdös-Rényi graphs is trivial, since it is given by the definition. Fixed connectivity
graphs can be constructed as follows: first one attaches to each variable node a number c of links, thus obtaining Nc
links. These links have to be connected to the Mk = Nc links attached to constraint nodes. To do this, one simply
numbers the links from 1 to Nc and then pick up a random permutation of these numbers in order to decide which
of the variable links has to be attached to a given constraint link. The resulting graph however might have variables
that are connected twice or more to the same node. In this case the permutation is discarded and a new one is picked
until a good graph is reached. In practice the probability of such event is small if N is large and c not too large, so
that the procedure converges fast to a good graph.

The key properties of random graphs that is exploited by the cavity method is that loops are very large in the
thermodynamic limit, as we discussed in the introduction to this section. Therefore, locally random graphs looks like
trees. Before studying the cavity method, we must understand how to solve statistical mechanics models defined on
trees.

1 This can be seen as follow: the probability that a given site is connected to another one at each steps is p = 2/N . Therefore, the

distribution probability of the number of connection is given by Q(k) = pk(1 − p)(M − k)
`

M

k

´

. In the limit when M � k this goes to

Q(k) = Mk

k!
e−Mppk = 1

k!
e−cck.
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FIG. 6: An example of factor graph. The neighborhoods are for instance ∂i = {a, b, c, d} and ∂i \ a = {b, c, d}

V. GENERIC EQUATIONS FOR BELIEF PROPAGATION ON HYPER-GRAPHS

What if we have a problem with more than 3-body interaction, such as the one in the inference problem in the
first section? Luckyly, our equations generalize easyly to this case and we can write the recursion using a ψijk just as
easily as we did for a ψij . In order to do so, we shall the graphical models and factor graphs.

Factor graphs provide an useful representation of a CSP. These graphs (see Fig. 6 for an example) have two kind
of nodes. Variable nodes (filled circles on the figure) are associated to the degrees of freedom σi, while constraint
nodes (empty squares) represent the clauses ψa. An edge between constraint a and variable i is drawn whenever ψa

depends on σi. The neighborhood ∂a of a constraint node is the set of variable nodes (i1, · · · , iKa
) that appear in

a. Conversely we will denote by ∂i the set of all constraints (a1, a2, . . .) in which variable i is involved. We shall
conventionally use the indices i, j, . . . for the variable nodes, a, b, . . . for the constraints, and denote \ the subtraction
from a set. The graph distance between two variable nodes i and j is the number of constraint nodes encountered on
a shortest path linking i and j (formally infinite if the two variables are not in the same connected component of the
graph).

Let us do it for any kind of interaction involving two variables, again where the interaction graph is a tree. We refer
the reader to [1] for a detailed derivation, and we shall here directly gives the results in term of (cavity) probabilities.

We saw that it was also possible to write recursion in terms of probabilities. The recursion equations read

ηj→a(σj) ∝
∏

b∂j\a

νb→j(σj) (54)

with

νa→j(σj) ∝
∑

σ∂a\j

ψa

∏

k∂a\j

ηk→a(σk) (55)
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VI. APPLICATION: THE ISING FERROMAGNET ON A RANDOM GRAPH

We can now solve a first non trivial problem: the Ising ferromagnet on a Random Graph. For simplicity, we shall
consider the regular case with a fixed value of c.

In the high temperature phase, we find that ηi→j = 1/2. A simple computation leads to the free energy:

−βf = log 2 +
c

2
log coshβ (56)

Below the critical temperature, we must now use the value of η that is the fixed point of

ηc =

[

ηce
β + (1 − ηc)e

−β
]c−1

[ηceβ + (1 − ηc)e−β]
c−1

+ [ηce−β + (1 − ηc)eβ ]
c−1 (57)

wich is fully equivalent to the previous equation if one sets ηc = 1+tanhβm
2 . From then, we can determine the total

value of the magnetization, and the value of the free energy.
Note that the validity of this approach was proven rigorously by Montanari and Dembo [9]. However, we know

this is not generic and that things can be (much) more complicated for “glassy” or “complex” systems: in particular,
there could be many (exponentially many) solution to those equations [10].
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VII. RANDOM CONSTRAINT SATISFACTION PROBLEMS:THE COLORING PROBLEM

We shall now discuss a constraint satisfaction problem, and start by one which is particularly convenient: the
coloring problem.

The Graph Coloring problem (COL) is a very basic and famous problems in combinatorics [11] and in statistical
physics[12]. Given a graph, or a lattice, and given a number q of available colors, the problem consists in finding a
coloring of vertices such that no two neighbor- ing vertices have the same color. The minimally needed number of
colors is the chromatic number of the graph. For planar graphs there exists a famous theorem [2] showing that four
colors are sufficient, and that a coloring can be found by an efficient algorithm. On the contrary, for general graphs
the problem is computationally hard to solve: already in 1972 it was shown that Graph Coloring is NP-complete
[13] which means, roughly speaking, that the time required for determining the existence of a proper coloring grows
exponentially with the graph size.

Two main problems: the q log q and the 2q log q problems. Hard/Easy transition and Possible/Impossible transition.
The same happens in SAT.

So, what should we do? Let us first do the annealed computation.
Then, let us apply cavity. We find the same !!! In fact, this is the rigorous results at low connectivity (Bandyopad-

hyay and Gamarnik). So there is a phase transition somewhere

−βf = c log q +
c

2
log 1 −

1 − e−β

q
(58)

s = log q +
c

2
log 1 −

1

q
(59)

Bounds...
There is a glassy phase
Appearance of many many solution
A simple argument in the large connectivity limit
We recover q log q and the 2q log q.
Glass transition. In the Glassy phase we use Survey propagation instead of Belief Propagation (replica symmetric

breaking).
Note that BP can be use on a single graph as solver (decimation) and as a way to estimate the entropy. Difference

between average cases and a given graph.
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VIII. WHERE DO WE STAND?: A REVIEW

In the last section, we perform a kind of review on the knowledge we have now of hard random constraint satisfaction
problems. This chapter can be skiped by most readers. . .

A. Introduction

Spin glass theory has a large and probably initially unexpected impact on some problems far from condensed matter
physics and one example of such spectacular outcome is the application of statistical physics ideas to combinatorial
optimization and of the concept of phase transitions to the probabilistic analysis of Constraint Satisfaction Problems
(CSPs) [14–16]. Given a set of N discrete variables subject to a set of M constraints, a CSP consists in deciding if
there exists an assignment of the variables satisfying all the constraints. This is a generic setting that is currently
used to tackle problems as diverse as, among others, error-correcting codes, register allocation in compilers or genetic
regulatory networks. The class of NP-complete problems [11], for which no algorithm is known that guarantees to
decide satisfiability in a time polynomial in N , is particularly interesting. Well-studied examples of such problems are
the satisfiability of boolean formulas (SAT), and the q-coloring problem (q-COL, see figure 7) that we shall discuss
here. Given a graph with N vertices and M edges connecting certain pairs of them, and given q colors, can we color
the vertices so that no two connected vertices have the same color?

Crucial empirical observations were made when considering the ensemble of random graphs with a given average
vertex connectivity c: while below a critical value cs a proper q-coloring of the graph exists with a probability going to
one in the large size limit, it was found that beyond cs no proper q-coloring exists asymptotically. This sharp threshold
(which appears in other CSPs such as K-SAT and whose existence is partially proved in [17]) is an example of a phase
transition arising in random CSPs. It was also observed empirically [18, 19] that deciding colorability becomes on
average much harder near to the coloring threshold cs than far away from it. It is therefore natural to ask ourselves:
Can the value of the colorable/uncolorable (COL/UNCOL) phase transition be computed? Can the number of all
possible colorings be also computed? Are there other interesting phase transitions? Can these transitions explain the
fact that solutions are sometimes very hard to find? Can this knowledge help us in designing new algorithms? These
questions, and their answers, are at the roots of the interest of the statistical physics community in optimization
problems [15, 16].

B. A Potts anti-ferromagnet on random graphs

It is immediate to realize that the q-coloring problem is equivalent to the question of determining if the ground-state
energy of a Potts anti-ferromagnet on a random graph is zero or not [20]. Consider indeed a graph G = (V , E) defined
by its vertices V = {1, . . . , N} and edges (i, j) ∈ E which connect pairs of vertices i, j ∈ V ; and the Hamiltonian

H({s}) =
∑

(i,j)∈E

δ(si, sj) . (60)

With this choice there is no energy contribution for neighbors with different colors, but a positive contribution
otherwise. The ground state energy (the energy at zero temperature) is thus zero if and only if the graph is q-
colorable. This transforms the coloring problem into a well-defined statistical physics model. Usually, two types of
random graphs are considered: in the c−regular ensemble all points are connected to exactly c neighbors, while in
the Erdős-Rényi case the connectivity has a Poisson distribution.

C. Cavity method: Warnings, Beliefs and Surveys

Over the last few years, a number of studies have investigated CSPs following the adaptation of the so-called cavity
method [14] to random graphs [10, 16]. It is a powerful heuristic tool —whose exactness is widely accepted but
has still to be rigorously demonstrated— equivalent to the replica method of disordered systems [14]. Its main idea
lies in the fact that a large random graph is locally tree-like, and that an iterative procedure known in physics as
the Bethe-Peirls method can solve exactly any model on a tree (such models are often qualified as “mean field” in
physics). Interestingly, it was realized [6] that an equivalent formalism has been developed independently in computer
science [7], where it is called Belief Propagation (BP, which conveniently enough, may also stands for Bethe-Peirls).
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FIG. 7: Example: a proper 3-coloring of a small graph.

Defining ψi→j
c (c = 1, .., q) as the probability that the spin i has color c in absence of the spin j (the “belief” that the

spin j has on the properties of the spin i), BP reads

ψi→j
c =

1

Zi→j
0

∏

k∈N(i)\{j}

(

1 − ψk→i
c

)

(61)

where Zi→j
0 is a normalization constant and the notation k ∈ N(i) \ {j} means the set of neighbors of i except j.

From a fixed point of these equations, the complete beliefs in presence of all spins can be also computed. They give,
for each vertex, the probability of each color from which other quantities, as for instance the number of solutions,
can be computed. A simpler formalism, called Warning Propagation (WP), restricts itself to frozen variables (i.e. to
variables for which only one color can satisfy the constraints). However, WP does not allow to compute the number
of solutions, only their existence, but is definitely simpler to handle.

It was soon realized, however, that these methods developed for trees could not be used straightforwardly on all
random graphs because of a non-trivial phenomenon called clustering [10, 21] (for which rigorous results are now
available, see [22]). Indeed, while for graphs with very low connectivities all solutions are “connected” —in the sense
that it is easy with a local dynamics to move from one solution to another— they regroup into a large number of
disconnected clusters for larger connectivities. It can be argued that each of these clusters corresponds to a different
fixed point of the BP equations, so that a survey over the whole set of the fixed points should be performed. This
can be done in the cavity method by the now famous Survey Propagation (SP) equations [16] which, in the physics
language, correspond to the Parisi’s one-step Replica Symmetry Breaking (RSB) scheme [14]. Within this formalism,
the number of clusters (which behaves as N = eNΣ, where Σ is a fundamental quantity called the complexity) and
their sizes (the number of proper colorings inside the cluster) can be determined.

This formalism has been applied on the SAT [16] and COL [23–26] problems in the limit of infinitely large graphs.
These cutting edge studies were however restricted to SP applied to the clusters corresponding to fixed points of WP
and not to those of BP. Although this already allowed the correct computation of the COL/UNCOL transition and
the development of a powerful algorithm [16], it meant that the description of the clustered phase was only partial and
this resulted in a number of problems and inconsistencies that stayed unanswered until very recently. These issues
have been today clarified [25, 27, 28] and we shall now discuss this new understanding.

D. The phase diagram of the coloring problem on a random graph

Consider that we have q ≥ 4 colors (the q = 3 case being a bit particular [25, 26], as we shall see) and a large
random graph whose connectivity c we shall increase. Different phases are encountered that we will now describe
(and enumerate) in order of appearance (the corresponding phase diagram is depicted in figure 8).

(i) A unique cluster exists: For low enough connectivities, all the proper colorings are found in a single cluster,
where it is easy to “move” from one solution to another. Only one possible —and trivial— fixed point of the BP
equations exists at this stage (as can be proved rigorously in some cases [29]). The entropy can be computed
and reads in the large graph size N limit

s =
logNsol

N
= log q +

c

2
log

(

1 −
1

q

)

. (62)
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Cluster without frozen variable
Cluster with frozen variables

CONDENSATION RIGIDITY UNCOL

connectivity

Uncolorable phaseColorable phase

CLUSTERING

c c c cc srd

(i) (ii) (iii) (iv) (v) (vi)

FIG. 8: Sketch of the space of solutions —colored points in this representation— in the q-coloring problem on random graphs
when the connectivity c is increased. (i) At low c, all solutions belong to a single cluster. (ii) For larger c, other clusters of
solutions appear but a giant cluster still contains almost all solutions. (iii) At the clustering transition cd, it splits into an
exponentially large number of clusters. (iv) At the condensation transition cc, most colorings are found in the few largest of
them. (v) The rigidity transition cr (cr < cc and cr > cc are both possible depending on q) arises when typical solutions belong
to clusters with frozen variables (that are allowed only one color in the cluster). (vi) No proper coloring exists beyond the
COL/UNCOL threshold cs.

(ii) Some (irrelevant) clusters appear: As the connectivity is slightly increased, the phase space of solutions
decomposes into an large (exponential) number of different clusters. It is tempting to identify that as the
clustering transition, but it happens that all (but one) of these clusters contain relatively very few solutions
—as compare to whole set— and that almost all proper colorings still belong to one single giant cluster. Clearly,
this is not a proper clustering phenomenon and in fact, for all practical purpose, there is still only one single
cluster. equation (62) still gives the correct entropy at this stage.

(iii) The clustered phase: For larger connectivities, the large single cluster also decomposes into an exponential
number of smaller ones: this now defines the genuine clustering threshold cd

2. Beyond this threshold, a local
algorithm that tries to move in the space of solutions will remain prisoner of a cluster of solutions. Interestingly,
it can be shown that the total number of solutions is still given by equation (62) in this phase. This is because,
as is well known in the replica method, the free energy has no singularity at the dynamical transition (which is
therefore not a true transition in the sense of Ehrenfest, but rather a dynamical or geometrical transition in the
space of solutions).

(iv) The condensed phase: As the connectivity is further increased, a new sharp phase transition arises at the
condensation threshold cc where most of the solutions are found in a finite number of the largest clusters. From
this point, equation (62) is not valid anymore and becomes just an upper bound. The entropy is non-analytic
at cc therefore this is a genuine static phase transition.

(v) The rigid phase: As mentioned in section VIII C, two different types of clusters exist: In the first type, that
we shall call the unfrozen ones, all spins can take at least two different colors. In the second type, however, a
finite fraction of spins is allowed only one color within the cluster and are thus “frozen” into this color. These
frozen clusters actually correspond to non-trivial fixed points of BP and WP, while the first kind are non-trivial
fixed points of BP only. It follows that a transition exists, that we call rigidity, when frozen variables appear
inside the dominant clusters (those that contains most colorings). If one takes a proper coloring at random
beyond cr, it will belong to a cluster where a finite fraction of variables is frozen into the same color. Depending
on the value of q, this transition may arise before or after the condensation transition (see table III).

(vi) The UNCOL phase: Eventually, the connectivity cs is reached beyond which no more solutions exist. The
ground state energy (sketched in figure 9) is zero for c < cs and then grows continuously for c > cs. The values

2 It is important to point out that the location of the clustering transitions was therefore not computed correctly when the dependence on
the size of clusters was not taken into account. Also, different results were obtained previously depending on whether or not unfrozen
fixed points were explicitly considered.
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q cd cr cc cs

3 5+ - 6 6

4 9 - 10 10

5 14 14 14 15

6 18 19 19 20

7 23 - 25 25

8 29 30 31 31

9 34 36 37 37

10 39 42 43 44

q cd cr cc cs

3 4 4.66(1) 4 4.687(2)

4 8.353(3) 8.83(2) 8.46(1) 8.901(2)

5 12.837(3) 13.55(2) 13.23(1) 13.669(2)

6 17.645(5) 18.68(2) 18.44(1) 18.880(2)

7 22.705(5) 24.16(2) 24.01(1) 24.455(5)

8 27.95(5) 29.93(3) 29.90(1) 30.335(5)

9 33.45(5) 35.658 36.08(5) 36.490(5)

10 39.0(1) 41.508 42.50(5) 42.93(1)

TABLE III: Threshold connectivities cd (dynamical/clustering) [25, 26, 32, 33], cr (rigidity/freezing) [26, 34], cc (condensa-
tion/Kauzmann) [25, 26] and cs (COL/UNCOL) [23, 24] for regular (left) and Erdős-Rényi (right) random graphs. In the large
q-limit, one finds in both cases that [25, 26]: cr = q[log q + log log q + 1 + o(1)], cc = 2q log q − log q − 2 log 2 + o(1) and [24]:
cs = 2q log q − log q − 1 + o(1).

cs computed within the cavity formalism are in perfect agreement with the rigorous bounds [30] derived using
probabilistic methods and are widely believed to be exact (although they remains to be rigorously proven, but
see [31] for a proof that they are at least rigorous upper bounds).

We report the values of the threshold connectivities corresponding to all these transitions in table III for the regular
and the Poissonian (i.e. Erdős-Rényi) random graphs ensembles. Notice that the 3-coloring is peculiar because cd = cc
so that the clustered phase is always condensed in this case. In view of this rich phase diagram, it is important to get
an intuition on the meaning and the properties of these different phases and, in this respect, it is interesting before
entering the algorithmic implications to discuss the analogies with the glass transition.

E. A detour into the ideal glass transition phenomenology

To those familiar with the replica theory and the mean field theory of glasses, the phenomenology depicted in
the former section should look familiar: these successive transitions are indeed very well known in the picture of
the ideal glass transition [35]. This striking analogy is in fact quite natural since, despite the fact that there is no
disorder in the interactions in Hamiltonian (60), the frustration due to the loops in the random graph makes the
model behaving like a disordered “anti-ferromagnetic” Potts spin glass [36] and such models are known to display the
glassy phenomenology [20, 35].

The phase diagram obtained on Poissonian random graphs with average connectivity c for q ≥ 4 is sketched in
figure 9 (the q = 3 model is slightly different as, again, Td = Tc). At high temperature the system behaves as a
liquid (or a paramagnet in the language of magnetic systems). Below a temperature Td a first transition —called
“dynamical”— happens and the system falls out of equilibrium. For T < Td it is not possible for a physical dynamics
to equilibrate the system and the ergodicity is broken: this is due to the appearance of exponentially many different
states. However, the would-be equilibrium properties of the problem remain similar (and in particular, the free-energy
has no singularity at this temperature). Only at temperature Tc the free energy is non analytic and a true “static”
glass transition happens, called the Kauzmann transition [35]. In this phase only a finite number of states does matter
at a given connectivity. Finally, for larger connectivities, a third phenomenon is observed as the temperature is further
lowered, called the Gardner transition [37]. It is a transition towards a more complicated phase, similar to the one
found in the celebrated solution of the Sherrington-Kirkpatrick model [14]. The fact that the Gardner transition
arises for connectivities larger the COL/UNCOL one is very important in this respect: it shows that the study of this
phase, that requires a more involved cavity formalism (and probably further RSB), does not seem to be needed in
the colorable phase3. We also now recognize that the “clustering” and the “condensation” transitions in the coloring
problem are just the zero temperature relics of the dynamic and Kauzmann transitions at finite temperatures.

3 The expert reader might find this puzzling, as many papers stated that the simple “one replica symmetry breaking” [10, 16] solution
was unstable towards a more complex solution in some region of the COL/SAT phase [24, 38]. However, these results were obtained
neglecting the role of the sizes of the clusters: while in some cases most clusters are indeed unstable, our studies [36] indicate that the
relevant ones seem always stable in the COL phase (although the cases of 3−COL and 3−SAT might be problematic, see [26, 36]).
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FIG. 9: Sketch of the phase dia-
gram in the coloring problem at fi-
nite temperature (from [36]). At Td,
the system falls out of equilibrium
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system undergoes a “static” glass
transition. Finally, at TG, a Gard-
ner transition appears. eGS repre-
sents the ground state energy.

A similar connection with the physics of glassy system can also be obtained directly at zero temperature via the
jamming phenomenology [39] where the density of constraints (in this case the volume of some non-overlapping
spheres in a box of fixed volume) are increased and where a dynamical transition is first met while some authorized
configurations exist much beyond this point. We thus see that the coloring problem on random graphs translates into
a very general mean field model of a complex liquid. This convergence of interest between different disciplines is quite
interesting in itself and allows to discuss a number of matters, as we shall now see.

F. Onset of hardness for local search algorithms

The properties of the phase diagram we just discussed are based on analytical computations through the cavity
method. We would like to discuss now what are the implications of these different phases on the performance of simple
local search algorithms that try to find a solution. This is, however, a much harder subject to handle analytically and
we shall thus leave the field of analytical computations to enter the one of phenomenology. Still, the behavior of an
algorithm trying to find a solution is reminiscent of the behavior of the physical dynamics in glassy systems, and we
can at least exploit this analogy in order to get an intuition for the problem that we can later confirm with numerical
simulations.

It is first tempting to identify the point cd, where a physical Monte-Carlo dynamics gets trapped into a cluster, with
the onset of computational hardness4. However, a second moment though indicates that this should not be the case:
In the glass transition phenomenology, it is well known that, although the system falls out of equilibrium beyond Td,
its energy can be further lowered by lowering the temperature, or just by waiting a bit longer [39]. In short: the fact
that dynamics is prisoner of a given region of the set of possible configurations does not mean that no solution can
be found in this region. Although cd is indeed a sharp transition for the Monte-Carlo sampling, there is no reason, a
priori, to experience difficulties if one just want to find one solution beyond this point. This is particularly transparent
in the analysis and the algorithm introduced in [39] (and directly inspired from the analogy with jamming):

1. Start with a graph of connectivity c and a proper coloring.

2. Increase the density of constraint by adding a link in the graph.

3. Use a simple algorithm in order to solve the contradiction introduced by the link. When it is done, go back to
step (i).

By applying this strategy, starting from scratch (i.e. from a graph with N vertices and no link), the set of all proper
colorings undergoes the successive transitions described in figure 8 as connectivity increases. When the dynamical
transition is reached, one is trapped inside a cluster of solutions, but this is not really a problem as one is still free to
move inside the cluster. As more links are added, the cluster size is decreasing continuously but while it still exists,
the local algorithm should be in principle able to find solutions nearby. Only for larger connectivities, when the
cluster gets frozen, it disappears and consequently the algorithm stops. It was shown in Ref. [39] through numerical
simulations that this strategy, using the Walk-COL [26] algorithm for step (iii), is indeed efficient, and linear in N ,
much beyond the dynamical transition.

4 When the clustering phenomena was discovered in CSPs, it was indeed initially conjectured to be responsible for the onset of hardness
for local search strategies [16, 21] and the clustered phase was named the “hard phase”. However, some local algorithms were found to
easily beat the threshold (see [40] for SAT and [26] for COL).



20

Zero energy states

Positive energy states

FIG. 10: Artist’s view of the energy landscape for low
connectivities c > cd: a region dominated by canyons
that reach the ground-states.

Zero energy states

Positive energy states

FIG. 11: Artist’s view of the energy landscape for
large connectivities c > cd: a region dominated by
high mountains and deep valleys.

The reason why this recursive strategy becomes inefficient when the cluster in which the dynamics is trapped freezes
is the following: if a link is put between two vertices frozen in the same color, it is impossible to satisfy the constraints
while remaining in the cluster. As opposed to the unfrozen clusters, the frozen clusters thus have a finite probability
to disappear when a new link is added. A cavity-like analysis [34], confirmed by numerical data [39], actually shows
that the number of changes that the algorithm must perform, in order to solve the contradictions imposed by the
addition of new links, increases with the connectivity and diverges when the frozen variables appear. The source of
difficulties is therefore not the clustering phenomenon in itself, but rather the appearance of frozen variables. This
makes the analysis and the prediction of a EASY/HARD threshold much harder since (as one can see on figure 8)
clusters of different sizes freeze at different connectivities, although a connectivity c∗ ≥ cr exists where all clusters are
frozen, thus putting a strict bound to the efficiency of this procedure.

Interestingly, even non-incremental algorithms may also pass the cd threshold [26, 40], and that might come as a
surprise for those having in mind the “rugged” many-valley energy landscape picture of spin glasses. This apparent
paradox can be clarified by the following considerations: It is possible that at lower connectivity c > cd the energy
landscape is dominated by deep canyons (figure 10), where it is in principle easy to go down as one has just to jump
ahead! At larger connectivities a more rugged region with many deep valleys and high mountains is found (figure 11)
in which case, as any mountain-hiker will undoubtly know, it takes some time to go to the deepest valley because
many hills have to be climbed first. This difference in behavior might explain the “unreasonable efficiency” of local
algorithm and the performance of the annealing procedure beyond cd [32].

To further illustrate this point, consider the Walk-COL algorithm introduced in [26] (and adapted from a similar
one in SAT [40]) defined by the following procedure

(i) Randomly choose a spin that has the same color as at least one of its neighbors.

(ii) Change randomly its color. Accept this change with probability one if the number of unsatisfied spins has been
lowered, otherwise accept it with probability p (this is a parameter that has to be tuned for better efficiency).

(iii) If there are unsatisfied vertices, go to step (i) unless the maximum running time is reached.

This algorithm can easily find colorings for large sizes in linear time beyond cd [26], but certainly not too close to the
UNCOL transition where it gets trapped at higher energies (see figure 12).

So far, there are few analytical results about the energy landscape in this problem and it is likely that this will be
the subject of further studies. It is unfortunately very hard to say for which connectivities the landscape goes from
canyons-dominated to mountains-dominated as this may not be a sharp transition and more a matter of —certainly
algorithm-dependent— basins of attraction. The rigidity transition for typical clusters is certainly a good candidate
as a crossover in behavior (as is the connectivity where all clusters are frozen).

To conclude, one sees that although the algorithmic issues are indeed more difficult to handle than the phase
diagram, at least two important points can already be made: First, the dynamical transition does not correspond to
the onset of hardness, and second, the source of difficulty seems more to be related with the appearance of frozen
variables.
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the clustered phase for low c (in the
canyon-like region), but get trapped in
the high energy valleys for larger c. In-
set: estimated time τ = t/N needed to
find a solution versus connectivity.

G. Message Passing and Decimation

The class of local search algorithms is only one part of the story. A different class, where messages are exchanged
through the nodes of the graph, was proven to be very efficient in computer science. BP and WP are examples of such
procedures and it is thus interesting to use the information given by the cavity analysis to discuss their performance
in estimating the marginals —or other informations— in the problem. A major outcome of the last years has also
been the application of SP as a message passing (MP) [16].

From the information given by the fixed point of the MP, an algorithm can be defined in the following way [16]: (i)
run the MP to obtain some information, and (ii) fix (decimate) some variables according to this information. This
sequence is iterated until a solution is found, or until a contradiction is met. The two parts are quite independent
and each of them can be changed separately (for instance a self consistent re-enforcement has been tried instead of
the decimation with very good results [41]).

According to the cavity formalism, the iterative fixed point of BP correctly estimates the marginals until the
condensation at cc [25] (which, conveniently, is very close to cs). Indeed the application of BP plus decimation is
numerically efficient in finding solutions for both SAT and COL [25, 26, 42] and it would be interesting to see if
this method allows to find “typical” solutions beyond cd, thus bypassing the problems of Monte-Carlo algorithms.
It seems that the strategy is efficient even beyond cc in some cases [26], although the BP recursion does not always
converge (and when it does, it does it slowly) on the decimated graph, in which case an imprecise and approximate
information is obtained. These issues are thus far from being properly understood at the present time, and we hope
that new works will be done in this direction.

A more powerful strategy in the clustered phase is to use SP to compute the probability that a given variable is
frozen is a cluster [16]. Fixing the variables which are frozen in most clusters seems a good way to decimate the
graph. Using this method in random 3-SAT allows to outperform any other known algorithm and to find solutions
of huge instances rapidly even very close to the threshold [16, 41]. The method has been subsequently adapted for
the 3−coloring in [23]. Interestingly, SP behaves better than BP on the decimated graph and has no problem of
convergence. Other strategies are possible that have not yet been exploited [26].

The best way to extract the informations given by the fixed point of these message passing procedures is however
not yet known, nor is the limit until where these strategies are efficient. However, this line of thoughts is certainly
the most promising way in the direction of better solving and sampling algorithms.

H. Conclusions and perspectives

In this paper, we considered and reviewed some aspects of the q−coloring of large random graphs. We discussed the
properties of the set of solutions and the different sharp phase transitions it undergoes when the average connectivity
is varied. The problem translates in physics into a mean-field model with an ideal glass transition. The cavity
method has been efficient in giving insight into the problem, although the important challenge of proving rigorously
these results remains. It would be interesting in this respect to confirm these predictions by performing extensive
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Monte-Carlo simulations of the phase diagram depicted in figure 9.
We also discussed the dynamical behavior of local search algorithms. We saw that although the “dynamical”

transition has a direct meaning as the point where local Monte-Carlo algorithms get out of equilibrium, it is not
directly connected with the onset of hardness in the problem which is rather due to the fact that clusters “freeze”
as the connectivity increases. So far, it has not therefore been possible, despite initial hope, to have well-defined
HARD and EASY phases. The precise role of frozen variables and the part played by the rigidity transition, or by
the connectivity where all clusters becomes frozen, will undoubtly be the subject of new research, both in numerical
and theoretical directions, that will help to clarify these issues. A refined knowledge of the energy landscape would
also be valuable.

Finally, we also discuss the major breakthrough in the algorithmic strategy that emerged from the application of
the cavity solution on a single given graph. It is not clear at the present time what it the best way to use this approach
and how efficient it can be, nor if it is possible to go arbitrarily close to the satisfiability/colorability threshold for
any values of q, and it is likely that these questions will also trigger a lot of work in the future.
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