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(d) What is the asymptotic expression of the curve of coexistence
of phases in the immediate vicinity of the critical point?

(e) Use your results to obtain the critical exponents ß, ì, 8, and a.

5. Consider the Curie-Weiss equation for ferromagnetism,

m = tanh(ßH + ßÀm) ,

Obtain an asymptotic expression for the isothermal susceptibility,
X (T, H), at T = Tc for H -- O. Obtain asymptotic expressions for
the spontaneous magnetization for T .:.: Tc (that is, for T -- 0) and
T ;: Tc (that is, for t -- 0-).

.~~ I~J'

,:D
1.__1'.~:

,:'::::;
i:r.
!O
,10I;: "~,.'

,~¡-
;i"~-',(/)
cr.: .~

~!-i
i:~:~
r~J'"

::)
Lr,~¡
I.,,~
~~::
J..,-
1~1')

ij'~r.:'''''')..".
I J:',."

13
The Ising Model

Most of the experiments in the neighborhood of critical points indicate that
critical exponents assume the same universal values, far from the predic-
tions of the "classical theories" (as represented by Landau's phenomenol-
ogy, for example). We now recognize that the universal values of the critical
exponents depend on a just few ingredients:

(i) The dimension of physical systems. Usual three-dimensional systems
are associated with a certain class of critical exponents. There are
experimental realizations of two-dimensional systems, whose critical
behavior is characterized by another class of distinct and well-defined
critical exponents.

(ii) The dimension of the order parameter. For simple fluids and uniaxial
ferromagnets, the order parameter is a scalar number. For an isotropic
ferromagnet, the critical parameter is a three-dimensional vector.

(iii) The range of the microscopic interactions. For most systems of phys-
ical interest, the microscopic interactions are of short range. We wil
see that statistical systems with long-range microscopic interactions
lead to the set of classical critical exponents.

Owing to the universal behavior of critical exponents, it is enough to ana-
lyze very simple (but nontrivial) models in order to construct a microscopic
theory of the critical behavior. The Ising model, including short-range in-
teractions between spin variables on the sites of a d-dimensional lattice,
plays the role of a prototypical system. The Ising spin Hamiltonian is given
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by In one dimension, it is relatively easy to obtain an expression for this free
energy. We wil use the technique of the transfer matrices, which can also
be written in higher dimensions, to obtain a solution for the Ising chain.
However, as shown by Ising in 1925, tils one-dimensional solution is quite
deceptive, since the free energy is an analytic function of T and H (ex-
cept at the trivial point T = H = 0), which precludes the existence of a

spontaneous magnetization (and of any phase transition).
Several approximate techniques have been developed to solve the Ising

model in two and three dimensions. Some of them are quite simple and
useful, and may lead to reasonable qualitative results for the phase dia-
grams (besides providing useful tools to investigate more complex model
systems). However, as pointed out before, phase transitions are associated
with a nonanalytic behavior of the free energy in the thermodynamic limit.
As a consequence, we should be warned against any truncations or pertur-
bative expansions around the critical point. Indeed, most of the approxi-
mate schemes can be written as a Landau expansion, leading to classical
critical exponents.

In a mathematical "tour de force," Lars Onsager, in 1944, obtained an
analytical solution for the Ising model on a square lattice, with nearest-
neighbor interactions, in the absence of an external field. For T -7 Te, the
specific heat diverges according to a logarithmic asymptotic form,
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N
1í = -f2':aiaj - HLai,

(ij) i=l
where ai is a random variable assuming the values :f1 on the sites i =
1,2, ..., N of ad-dimensional hypercubic lattice. The first term, where the
sum is over pairs of nearest-neighbor sites, represents the interaction ener-
gies introduced to bring about ~n ordered ferromagnetic state (if J ~ 0).
The second term, involving the interaction between the applied field Hand
the spin system, is of a purely paramagnetic character (as we have already
seen in previous chapters of this book). Since it was proposed by Lenz and
solved in one dimension by Ernst Ising in 1925, the Ising model has gone
through a long history ¡see, for example, the paper by S. G. Brush, in Rev.
Mod. Phys. 39, 883 (1967)J.

The Ising model can represent the main features of distinct physical
systems. In the usual magnetic interpretation, the Ising spin variables are
taken as spin components (that may be pointing either up or down, along
the direction of the applied field) of crystalline magnetic ions. We may also
consider a binary alloy of type AB. In this case, the spin variables indicate
whether a certain site on the crystalline lattice is occupied by an atom of
either type A or type B (neighbors of the same type contribute with an

energy -J; neighbors of different types, contribute with +J). As another
example, take the :f1 spin variables to indicate either the presence (+ 1) or
the absence (-1) of a molecule in a certain cell of a "lattice gas" (which is a
useful model for the critical behavior of a fluid system). This multiplicity of
interpretations is compatible with the ability of the Ising model to represent
the main features of the critical behavior of many different physical systems.

From the point of view of magnetism, the Ising Hamiltonian may be
regarded as a kind of approximation for the Heisenberg Hamiltonian, asso-
ciated with a highly anisotropic spin-1/2 magnetic insulator. The energy J
is interpreted as the quantum exchange parameter of electrostatic origin.
In this chapter, we take advantage of the more intuitive language of this
magnetic analogy to derive some properties of the Ising modeL.

In order to solve the Ising problem, we have to obtain the canonical

partition function

with a well-defined critical temperature, kBTefJ = 21 In (1 + J2). There-
fore, the free energy is not analytic at Te, and cannot be written as a
Landau expansion. The Onsager solution has been reproduced and con-
firmed by different techniques on many planar lattices (with first-neighbor
interactions). It represents a true milestone in the development of the mod-
ern theories of critical phenomena, By the first time, it was shown that a
microscopic model leads to nonanalytic behavior within the framework of
equilibrium statistical mechanics. The origins of this nonanalyticity were
later explained, under much more general grounds, by the Yang and Lee
theory of phase transitions (see Chapter 7), including the remarkable "circle
theorem" about the zeros of the partition function in the thermodynamic
limit. In the 1950s, C. N. Yang checked a result of Onsager for the spon-
taneous magnetization of the Ising ferromagnet on the square lattice to
obtain the exponent ß = 1/8, in sharp contrast with the classical value.
Nowadays, although there are no exact solutions in a field, we may be sure
that, = 714 in two dimensions. All planar lattices, with short-range in-

teractions, lead to the same set of critical exponents (a = 0, ß = 1/8,
, = 7/4), which are far from the experimental values for three-dimensional

systems, and far as well from the classical Landau results.
The solution of the Ising model in three dimensions remains an open (and

probably impossible) problem. However, we can use an argument due to

(13.1)

CH=O r- In IT - Tel, (13.4)

ZN=Z(T,H,N)= Lexp(-ß1í),
fUiì

where the sum is over all configurations of spin variables, and the Hamil-
tonian is given by equation (13.1). From tils partition function, we have

the magnetic free energy per site,

(13.2)

9 = 9 (T, H) = lim (-.ß1 inZN).N-.oo N (13.3)
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Peierls to prove the existence of spontaneous magnetization at suffciently
low temperatures. Also, since the 1960s there have been many efforts to
obtain quite long series expansions (at high as well as low temperatures)
for several thermodynamic quantities associated with the three-dimensional
Ising modeL. From refined asymptotic analyses of these series, we obtain a
range of values for the critical exponents in agreement with experimental
measurements (ß ~ 5/16, 'Y ~ 5/4, æ ~ 1/8). Also, more recent, and
much more sophisticated, renormalization-group techniques lead to similar
results, In the table below, we give the values of some usual thermodynamic
critical exponents.

Landau Ising (d = 2) Ising (d = 3) Experiments
ß 1/2 1/8 ~ 5/16 0.3 - 0.35

'Y 1 7/4 ~ 5/4 1.2 - 1.4

8 3 15 ~ 5 4,2 - 4.8

æ 0 o (log) ~ 1/8 ~O

13.1 Exact solution in one dimension

In one dimension (d = 1), the Ising Hamiltonian is written asN N
H = -JLO"iO"i+l - HLO"i'

i=1 i=1 (13.5)

The canonical partition function is given by¡ N LN J
ZN = L exp K L: O"iO"i+l + "2 L (O"i + O"i+l) ,

tad i=1 i=1 (13.6)

where K = ßJ, L = ßH, and the second term has been rearranged to take
advantage of a more symmetric form. As a matter of convenience, we adopt
periodic boundary conditions, O"N+l = 0"1. Now it is interesting to write
the partition function as

NZN= L IIT(O"i,O"i+l),
Ui,U2,""',O'N i=l

(13.7)

where

T (O"i, O"i+l) = exp (K O"iOiH + ~ (O"i + O"i+i) J '

This last expression can also be written as a standard 2 x 2 matrix, whose
indices are the spin variables, O"i = :l1 and O"i+l = :l1. We then define a

(13.8)
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transfer matrix,

T= (T(+,+)T(-,+)
T ( +, -) ) _ ( exp (K + L) exp ( - K) )
T(-,-) - exp(-K) exp(K-L) ,

(13.9)

and use the matrix formalism to see that equation (13.7) for the canonical
partition function is a trace of a product of N identical transfer matrices,

ZN = Tr(T)N. (13.10)

Furthermore, the transfer matrix (13.9) is symmetric, and can thus be
diagonalized by a unitary transformation,

UTU-1 = D, with U-1 = ut, (13.11)

where D is a diagonal matrix. Therefore, the canonical partition function
can be written in terms of the eigenvalues of the transfer matrix,

ZN = Tr (U-1DUt = Tr (D)N = Àt + À!J, (13.12)

where

À1,2 = eK cosh L:l (e2K cosh2 L - 2 sinh (2K)) 1/2 , (13.13)

are given by the roots of the secular equation, det (T - ÀI) = O. It is easy
to see that these eigenvalues are always positive, and that À1 / À2 (except
at the trivial point T = H = 0), In zero field, we have,

À1 = 2 cosh K 2: À2 = 2 sinh K, (13.14)

with a degeneracy (À1 = À2) in the limit K -7 00 (that is, for T -7 0),
To obtain the free energy in the thermodynamic limit, it is convenient

to write

ZN = Àt ¡ 1 + (~~) NJ ' (13.15)

Since À2 -: À1, we have the limit

9 (T, H) = )~oo (- ß~ InZN J = -~ InÀ1, (13.16)

that is,

9 (T, H) = -~ In t eßJ cosh (ßH) + (e2ßJ cosh 2 (ßH) - 2 
sinh (2ßJ)) 1/21,

(13.17)
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t t t t. . . . . .
l l

FIGURE 13.1. Ising chain with six sites and two different domains (at left and
at right of a point wall).

which is an analytic function of T and H, from which we derive all the
thermodynamic properties of the one-dimensional system.

The magnetization per spin is given by

m (T, H) = - (i~ ) T
sinh (ßH)

1/2 .
(sinh2 (ßH) + exp (-4ßJ))

We then see that, as m (T, H = 0) = 0, this model is unable to explain
ferromagnetism. From the entropy per spin, s = s (T, H) = - (åg/åT)H'
we can calculate the specific heat at constant field. In zero field, we have

CH=O = k:~2 (sech (k:T ) J 2 , (13.19)

which is a well-behaved function, displaying just a broad maximum as a
function of temperature,

According to an argument attributed to Landau, we can show that there
is no ordered state (therefore, no phase transition) in a one-dimensional sys-
tem with short-range interactions. Consider the ground staté of the Ising
chain, in the absence of an external field, with all spins pointing up, To
create two distinct domains, it is enough to reverse the sign of just a single
spin (see figure 13.1).This costs an amount of energy ljU = 2J :; O. How-
ever, there is an enormous increase of entropy, ljS = k B In N, since there
are N distinct positions to locate the separating wall between domains (for
a chain with N + 1 sites). At finite temperatures, the free energy of this
one-dimensional model undergoes a change

(13.18)
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ljG = 2J - kBTlnN,
which becomes negative for su.ffciently large values of N. Therefore, as the
free energy decreases, there is a tendency to create more and more domains,
which precludes the stabilty of any ordered phase. It is not diffcult to check
that similar arguents do not work in two dimensions, since the domain

walls are not so simple, and both ljU and ljS are much more complicated.
Using the technique of the transfer matrices, we can calculate the spin--

spin correlations,
~ 1

(G'kG'l) N = z L G'kG'1 exp (-ß7-) ,

~ad
(13.20)
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For L :; k, and a fair amount of algebra, it is possible to show that

).N-(I-k) (I k)
(G'kG'l) N = 1 ).2 - + ).~I-k) ).~-(I-k)).~ +).l (13.21 )

Thus, in the thermodynamic limit, we have

(). )(I-k)
(G'kG'l) = lim (G'kG'l) N = \2 ,N-+oo /\1 (13.22)

which stil works for L -: k, if we replace the difference (l - k) by its absolute

value, Il - ki In zero field, we write the pair correlation,

(G'kG'I)H=O = (tanhKf, (13.23)

where r = Il - kl is the distance between sites k and l. This expression can
also be written as

(G'kG'l) H=O = exp rrln (tanhKn = exp ( -~) , (13.24)

from which we define the correlation length,

ç=~ - -, . . (13.25)

Now, we see that ç diverges for K ~ 00 (that is, at the trivial critical
point, T = 0). For T f= 0, correlations decay exponentially, with the char-

acteristic length ç. For the Ising model in two dimensions, at T f= Te, and
for large enough distances, it can be exactly shown that correlations decay
exponentially, with a correlation length of the form ç '" \tl-II, where II = 1
and t = (T - Te) /Te ~ O. At the critical point (Te = H = 0), spin-spin
correlations decay asymptotically as a power law,

1
(G'kG'l)er '" rd-2+1)'

where r¡ = 1/4, for d = 2 and r ~ 00. From the classical Ornstein and

Zernike theory for the decay of the critical correlations, we obtain the
(classical) critical exponents II = 1/2 and r¡ = O.

13.2 Mean-field approximation for the Ising model
The standard mean-field approximation, also known as the Bragg-Willams
method, can be obtained in the canonical formalism if we suppose that,
besides the constraints of fied temperature and external magnetic field,
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there is an additional internal constraint that fies the magnetization per
spin.

For a spin-1j2 model, we write

N+ + N_ = N (13.26)
and

N+ - N_ = Nm, (13.27)
where N+ (N_) is the number of spins up (down), N is the total number
of spins, and m is the dimensionless magnetization per spin. Given N+ and
N_ (that is, Nand m), we can write the total entropy,N! N!S = kB In N+!N_! = kB In (N+rm)! (N-rm)! (13.28)

Now, if we take into account the translational symmetry of tiie Hamilto-
nian, the internal energy of a nearest-neighbor Ising model on ad-dimensional
hypercubic lattice is given by

U = (H) = -JdN (aiOj) - HNm. (13.29)

Therefore, with the additional constraint of fied magnetization, the mag-
netic free energy per spin is given by

1
- (U - TS) = -Jd (aiaj) - HmN
_ kBT In N!

N (N+2Nm)! (N-rm)!
Up to this point there are no approximations. The diffcult problem is the
calculation of the pair correlations in terms of T, H, and m.

The Bragg-Wiliams approximation consists in neglecting fluctuations in
the correlation functions. We then assume the approximation

g(T,H;m)

(13.30)
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(aiaj) ~ (ai) (aj) = m2, (13.31 )

Introducing a Stirling expansion to take care of the factorials, using the
approximate form of the spin-spin correlations, and taking the thermody-
namic limit, we can write the following Bragg-Wiliams free energy per
spin,

gBw(T,H;m) 2 1-Jdm - H m - - In 2
ß

1

+ 2ß ¡(1 + m) In (1 + m) + (1 - m) In (1 - m)J '
(13.32)
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To remove the internal constraint of fied magnetization, we minimize gBW
with respect to m. Hence, we obtain

1 1 + m = 0,8gBW =-2Jdm-H+2ßln1_m
8m (13.33)

from which the Curie-Weiss equation follows,

m = tanh (ß2Jdm + ßH), (13.34)

where the phenomenological parameter À is identified as the product 2dJ.
In this approximation, the critical temperature is given by kBTc = 2dJ,
and there is a transition even in one dimension. Although this result is
completely wrong, especially at low dimensions, we anticipate that mean-
field approximations become much better as the dimension increases.

The Bragg-Wiliams free energy, given by equation (13.32), can also be
written as 1 1 f
gBW (T, H; m) = -Jdm2 - Hm - ß In2 + ß (tanh -1m) dm, (13.35)

which leads to an identification with the function g (T, H; m), as obtained
in the last chapter from the phenomenological equation of Curie-Weiss. We
thus recover all of the classical results for the critical behavior.

The mean-field approximation can also be obtained from an elegant vari-
ational formalism based on the Peierls-Bogoliubov inequality, coming from
convexity arguments, already known by Gibbs himself ¡see, for example, H.
Falk, Am. J. Phys. 38, 858 (1970)J. For all classical systems (in fact, also
for quantum systems), we can write the inequality

G (H) :: Go (Ho) + (H -Ho) 0 = lP, (13.36)

where G (H) and Go (Ho) are free energies associated with two different
systems given by the Hamiltonians Hand Ho, respectively, and the thermal
average is taken with respect to a canonical distribution associated with
Ho' If we choose a noninteracting (trial) Hamiltonian,

N
Ho = -r¡ Lai,

i=1
(13.37)

where r¡ is a parameter, we have

Zo = L exp (-ßHo) = (2coshßr¡t '
ia;J

(13.38)

Thus
N

Go = -ß In ¡2coshßr¡J (13.39)
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(13.40)

The canonical partition function associated with the Curie-Weiss model
is given by

1 +¡= L (ßJ)1/2 N N J
~ y7 _= dxexp _x2 + 2 2N x t;O"i + ßHt;O"i

+=

J; 1 dxexp (_x2) \ 2cmh l2 (:~r x + ßHJ f(1347)

1 1
9 (T, H; m) = 2Jm2 - ß In ¡2 cosh (ßJm + ßH)J '

In order to obtain the free energy per spin in the thermodynamic limit,
we use Laplace's method to calculate the asymptotic form, as N -- 00, of
the integral (13.49). We thus have

and

(?t -?to)o = -JdN (O"iO"j)o - HN (O"i)o + r¡N (O"i)o'

z~ ttex (:~ (t,d')' +ßHt,d').with

(O"iO"j)o = (O"i)~ = (tanh ßr¡)2 and (O"i)o~= tanhßr¡. (13.41)

Hence, we have Now we use the Gaussian identity,1 1 1 1
N if = N if (T, H, N; r¡) = -ß In2 - ß In (coshßr¡)

-Jd (tanh ßr¡)2 - H tanhßr¡ + r¡ tanhßr¡, (13.42)

+=
¡ exp (_x2 + 2ax) dx = V1exp (a2) ,
-=

to calculate the sum over the spin variables in equation (13.45),This expression is just an upper bound for the free energy of the Ising
system under consideration. In the (mean-field) approximation, the free
energy per spin wil be given by the minimum of if (T, H, N; r¡) with respect
to the field parameter r¡,

gMF = ~ mJn if (T, H, Nj r¡) ,

Z

(13.43)

which corresponds to the smaller upper bound that comes from Bogoli-

ubov's inequality with a free trial Hamiltonian, It should be noted that r¡

depends on m through the relation m = tanhßr¡, from which we recover
the previous results of the Bragg-Wiliams approximation.

Introducing the change of variables

2 (ßJ)1/22N x = ßJm,
13.3 The Curie-Weiss model we have

( N 1/2 +=
Z = 27rßJ) ¡ dmexp ¡-Nßg (T,H;m)J ,

-=
Instead of working with an approximate solution on a Bravais lattice, it may
be interesting to introduce a (simplifying) modification in the very defini-
tion of the statistical modeL. With a suitable modification, some physical
features are not lost, and the new problem can be exactly solved. Accord-
ing to this strategy, a deformation of the interaction term of the nearest-
neighbor Ising Hanltonian leads to the Curie-Weiss model,

J N N N
?tew = -- '" '" O"~O" ~ - H '" 0"'2N ~ ~ i J ~ i,i=1 j=1 i=1

where

(13.44)

in which each spin interacts with all neighbors. The interactions are long
ranged (indeed, of infinite range), but very weak, of the order 11N, to
preserve the existence of the thermodynamic limit. In zero field, the ground-
state energy per spin of this Curie- Weiss model is given by U ew IN = - J 12
, which should be compared with the corresponding result for a nearest-
neighbor Ising ferromagnet on a hyper cubic d-dimensionallattice, U 1 N =
-Jd.

9 (T, H) = Nli!?= ~ - ß~ InZ J = mJ,n rg (T, H; m)l,

Hence,

8g (T, H; m) = Jm _ Jtanh (ßJm + ßH) = 0,
8m

(13.45)

(13.46)

(13.48)

(13.49)

(13.50)

(13.51)

(13.52)
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0'2 Hamiltonian of this cluster is given by

He = -Jao (a1 + ". + aq) - Hao - He (a1 + '" + aq). (13.54)

Thus, we write the canonical partition function of the cluster,

0'0 0'1

Ze = L exp (-(3He) = L exp ((3Hao) ¡2cosh ((3Jao + (3HeW. (13.55)tail ao0'3

From this expression, we calculate the spin magnetization of the central
site,

0'4

1 åmo = ß åH InZe,

and the spin magnetization of one of the surrounding sites,

(13.56)

FIGURE 13,2. Spin cluster with a central site and four surrounding sites,

m = tanh ((3Jm + (3H) , (13.53)

1 å
mp = (3q åHe In Ze'

After some algebraic manipulations, equation (13.56) may be written as

(13.57)
from which we have the ( Curie-Weiss) equation of state,

mo = tanh ((3H + qtanh -1 (tanh(3Jtanh(3He)) . (13.58)
which is the trademark of the mean-field approximation for the Ising modeL.
It is easy to check that this model with infinite-range interactions leads
to the same classical results of the Bragg-Wiliams approximation for the
Ising model on a Bravais lattice, As in the phenomenological treatment of
Landau, the expansion of the "functional" 9 (T, H; m) in powers of m gives
rise to a (rigorous) analysis of the transition in the Curie-Weiss modeL.
Although the coeffcients of the various powers of m are different from the
corresponding terms in the expansion of the Bragg-Wiliams "functional,"
all the critical parameters are exactly the same ¡see, for example, C. E. i.
Carneiro, V. B. Henriques, and S. R. Salinas, Physica A162, 88 (1989)J.

Also, it is not diffcult to write equation (13.57) in the more convenient
form

mp (1 - tanh 2(3J) tanh (3 He + mo (1 - tanh 2(3He) tanh(3J
1- (tanh(3Jtanh(3He)2

tanh ((3He + (3J) + tanh ((3He - (3J) exp (-2 tanh -1mo)
1 + exp (-2 tanh -1mo)

(13.59)
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The self-consistent condition, from which we eliminate the effective field,
is given by

13.4 The Bethe-Peierls approximation mo = mp = m, (13.60)

There are some self-consistent approximations for the Ising model on a
Bravais lattice, usually correct in one dimension, which do take into ac-
count some short-range fluctuations, and are thus capable of displaying
some features of the phase diagrams that are not shown by the standard
mean-field approximations (although critical exponents keep their classical
values). The Bethe-Peierls approximation is very representative of these
self-consistent calculations.

Consider a cluster 6f a central spin ao, in an external field H, and q
surrounding spins, in an effective field He, wruch is supposed to mimic
the effects of the remaining crystallne lattice (see figue 13.2). The spin

which leads to the equation of state of the Bethe-Peierls approximation,
m =m(T,H).

In zero field (H = 0), and in the neighborhood of the critical temperature,
m and He are very small. Therefore, we can write expansions for equations
(13.58) and (13.59),

m = q (tanh(3J) tanh (3 He + ." , (13.61)

m- 1
- cosh2(3J(3He+mtanh(3J+.... (13.62)
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From these expansions, it is easy to check that the critical temperature, in
this Bethe-Peierls approximation, wil be given by

kBTc = 2 (In i-J -1 (13.63)
J q- 2

In one dimension (that is, for q = 2), there is no phase transition (Tc = 0).
For q = 4 (which corresponds to a square lattice), kBTc/ J = 2/ In 2 =
2,885,.., smaller than the critical temperature from the Bragg-Wiliams
approximation, kBTc/ J = 4, but stil larger than the exact Onsager value,

kBTc/ J = 2/ In (1 + J2) = 2.269....
Approximations of the Bethe-Peierls type, based on self-consistent cal-

culations for a small cluster of spins, give an equation of state, but do not
lead to an expression for the free energy of the system (in general, it is
inconsistent to write the free energy from the canonical partition function
Zc of the cluster). In order to obtain a consistent free energy from the

equation of state, we write

and

2ßaH _ q - 1 1 z
ax - -- - z - x - zx - 1 ' (13.70)

with z = exp (2ßJ). Now, we perform some additional algebraic manipula-

tions to show that q-1 1 19 = --Inx+ -In(z -x) + -In(zx-1)2ß 2ß 2ß
q - 2

+2ß In (zx2 - 2x + z) + 90 (T), (13.71)

9 = - J m (T, H) dH + 90 (T) ,

where 90 (T) is a well-behaved function of temperature (which may be
found, for example, from a comparison with the high-temperature limit
of the exact free energy). For the Ising ferromagnet, we can go through
some algebraic manipulations to calculate this integral. Initially, note that
equation (13.58) may be written as

(13.64)

which is the free energy associated with the Bethe-Peierls approximation.
Finally, it is interesting to remark that the results of the Bethe-Peierls

approximation can be recovered from an exact solution of the Ising model i
on a Cayley tree. This graph is a peculiar layered structure, in which the
spins belonging to a certain generation interact with q other spins belonging
to the next generation, such that there are no closed cycles. Indeed, the

correspondence between the approximate and exact solutions works in the
central part of the limit of a large Cayley tree (which is then called a Bethe
lattice). The interested reader may check the works of C. J. Thompson, J.
Stat. Phys. 27, 441 (1982), and of M. J. Oliveira and S. R. Salinas, Rev.

Bras. Fis. 15, 189 (1985),

m = exp (2ßH) - xqexp (2ßH) + xq , (13.65)
13.5 Exact results on the square lattice

J aH9 = - m ax dx + 90 (T) , (13.68)

The discussion of the Onsager solution (and of its several alternatives) is
certainly beyond the scope of this book. The interested reader, with plenty
of spare time, should check the work of T, D, Schultz, D. C. Mattis, and
E. H. Lieb, Rev. Mod. Phys. 36, 856 (1964), where the technique of the
transfer matrix is used to reduce the calculation of the eigenvalues to the

problem of diagonalizing the Hamiltonian of a system of free fermions. The
transfer matrix is written in terms of Pauli spin operators, which are then
changed into fermions through the ingenious Jordan-Wigner transforma-
tion. We shall limit our considerations to a mere listing of some of the
Onsager results.

In the thermodynamic limit, the free energy of the Ising model (on
a square lattice, with nearest-neighbor interactions, in zero field) may be
written as a double integral,

where

1;1
:p......

.n:?:',i:i

1118
i!! .
iiP"'
~ilt-!I~--
'c/)
(:C'

li~~
,';t~.,i::,
;f....

!~i:~

1 - tanh ßJ tanh ßHex-
- 1 + tanhßJ tanh ßHe .

We can now use equation (13.59) to write

(2ßH) q-l exp (2ßJ) - xexp = x
x exp (2ßJ) - 1

(13.66)

(13.67)

Therefore, the magnetization m and the field H can be expressed in terms
of the new variable x. Hence, from equation (13.64), we have

-zx2 + zm = zx2 _ 2x + z (13.69)

7r 7r

-ß9 (T) = In2 + 2~2 J J In (cosh2 2K - sinh 2K (cosei + cose2)) deide2,

o 0

(13.72)

where
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where K = ßJ (in the original solution, Onsager already considered differ-
ent interactions along the two directions of the square lattice). Therefore,
we have the internal energy

u = _ J (1 + sinh2 2K -: 1tanh K 7l2n n i
d(Ji d()2

x ¡ ¡ cosh2 2K - sinh2K (COS()1 + COS()2)

o 0

where B is a constant and K ~ Ke.
From equation (13.73), we can write an analytic expression for the inter-

nal energy in terms of an ellptic integral of the first kind,

u = J _ _ (1 + (2 tanh 22K - 1) ~ K (k1) J ' (13.81)

where
(13,73)

1 kBTe 2 = 2,269....K- - _.---e - J (13,76)

k1 = 2 sinh (2K)cosh 22K '
and K (ki) is a complete ellptic integral of the first kind,

n/2

K (k1) = ¡ (1 - kf sin2 ()J -1/2 d(),
o

The specific heat can also be written in terms of complete ellptic integrals
(of first and second kind). Unfortunately, however, we do not have gener-
alizations of these results for either three dimensions or in the presence of
an external field!

(13.82)

The integral in this expression logarithmically diverges for

cosh 22K = 2 sinh 2K, (13.74)

that is, (13.83)

sinh2K = 1, (13.75)

which gives the Onsager critical temperature,

In the neighborhood of the critical temperature, it is convenient to in-
troduce a (small) parameter,

Exercises

8 = (sinh2K - 1)2. (13.77) 1. Consider a one-dimensional spin-l model, given by the HamiltonianN N
1- = -J¿SiSi+1 + D ¿ST,

i=1 i=1
For 8 ~ 0, we write

¡n ¡n d()1d()2 ¡ ¡ d()1d()2
cosh 22K - sinh 2K (cos ()1 + cos ()2) rv 8 + ! sinh 2K (()î + ()~)o 0 0 0

¡ rdr
= 27l 8 1 2 . rv -27lln8,

+ 2r sinh 2Ko

where we have kept the leading term only (and used polar coordinates to
simplify the integral in the intermediate step). From this asymptotic form,
we have the internal energy in the neighborhood of the critical temperature,

(13.78)

where J? 0, D ? 0, and Si = -1,0, +1, for all lattice sites.

(a) Assuming periodic boundary conditions, calculate the eigenval-
ues of the transfer matrix.

(b) Obtain expressions for the internal energy and the entropy per
SpIl.

(c) What is the ground state of this model (T = 0) as a function
of the parameter d = D / 17 Obtain the asymptotic form of the
eigenvalues of the transfer matrix, for T ~ 0, in the character-

istic regimes of the parameter d.
Ju rv - hK ¡i + A(K - Ke)lnlK - Kell,

tan e (13.79) 2. The one-dimensional Ising ferromagnet is given by the HamiltonianN N
1- = -J¿O"iO"i+1 - H¿O"i,i=1 i=1

where A is a constant. Taking the derivative with respect to temperature,
we have the famous asymptotic formula for the zero-field specific heat,

CH=O rv BIn IK - Kel, (13.80) with J ? 0 and O"i = :11 for all lattice sites.
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(a) In zero field (H = 0), show that

(IJkIJI) = (tanhßJ)lk-11 .

where the first sum is over nearest-neighbor sites, all parameters are
positive, and Si = -1,0,+1 for i = 1,2,.."N. Use the Bogoliubov-

Peierls variational principle, with a trial Hamltonian of the formN N
110 = +D ¿:S¡ - r¡ ¿:Si,

i=l i=l
(b) Consider the fluctuations of the magnetization in the canonical

ensemble to show that

X (T, H)
(~;) =~(,tIJiIJj)ß i,)=l N
- ~ (tIJi) (tIJj)i=l N )=1 N

where r¡ is a variational parameter, to obtai an approximate solution
for the free energy of this system,

gapprox (T, H) = min rg (T, Hi m) ì ,
1)

(c) Use the previous results to obtain an expression for the magnetic
susceptibility in zero field, Xo = X (T, h -7 0). Sketch a graph of
Xo versus temperature.

(d) Obtain an expression, in zero field, for the four-spin correlation
function, (IJiIJjIJkIJI), with 1 :: i :: j :: k :: L :: N.

(e) Show that the specific heat in zero field may be written as a sum
over four-spin correlation functions.

where m is a function of r¡ that corresponds to the magnetization per
spin. In zero field (H = 0), obtain the coeffcients of the expansion

g (T, H = 0; m) = A + Bm2 + Cm4 + Dm6 + . .. .
Now consider the phase diagram in zero field (in the d = D j J versus
t = kBTjJ plane, for H = 0). Obtain an expression for the line of
second-order transitions (?, line), given by B = 0 with C ~ 0, and
locate the tricritical point (B = C = 0, with D ~ 0). What happens
in the region of the phase diagram where C -c O? What happens at
T = O?

3. For a well-behaved convex function ø (x) of a random variable x, show
that

(Ø(x))~Ø((x)),

5. Sketch a graph of the specific heat in zero field as a function of temper-
ature for the Ising ferromagnet in the Curie-Weiss version. Obtain an
expression for the magnetic susceptibility X (T, H). Sketch the quali-
tative form of X versus the magnetic field H for three typical values
of temperature (T1 -c Te, T2 = Te, and T3 ~ Te).

6. The Curie-Weiss version of the Blume-Capel model, with a ferro-
magnetic ground state, is given by the spin Hamiltonian

Ø(x) ~ Ø((x)) + (x - (x))Ø' (x).
Taking the average with respect to a positive measure, show that

which is known, for ø (x) = exp (x), as Jensen's inequality. Show that
we obtain the classical version of the Peierls-Bogoliubov inequality if
we assume that

1
(-..) = -Tr¡exp(-ß11) ("')1Zo

( N)2 N N11= -2~ ~Si +D~S¡ -H~Si'
where the parameters are positive, and Si = + 1,0, - 1 for all sites.

and that (a) Show that the free energy per spin may be written as

ø (x) = exp ¡ß (11o-11)J. g (t, d, h) = min rg (t, d, h; yn ,y

N N
11 = -J¿:SiSj + D ¿:S¡ - H¿:Si,

(ij) i=l i=l

where t = kBTjJ, d = DjJ, and h = HjJ, Obtain an expression
for g (t, d, h; y).

(b) From an expansion of g (t, d, h; y) in powers of y, obtain expres-
sions for the critical line and the tiIcritical point (compare with
the results of problem 3).

4. The Blume-Capel model on a lattice of coordination q is given by
the spin Harrltonian
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(c) Sketch the phase diagram in the d - t plane (for h = 0).
(d) Sketch graphs of the spontaneous magnetization versus d for

some characteristic values of t.

14

7. Use the Bethe-Peierls approximation for the ferromagnetic Ising model
in the absence of an external field to obtain an expression for the ex-

pected value (a o(1), where a 0 is the cèntral spin of the cluster and a1
is the spin on a surrounding site. Sketch a qualitative graph of (a o(1)
versus temperature. Sketch a graph of the specific heat in zero field
versus temperature (compare with the result for the Curie-Weiss ver-
sion of the Ising model).

Scaling Theories and the
Renormalization Group

!..

It is too strong to assume that the free energy of a model system in the criti-
cal region can be expanded as a power series of the order parameter. The di-
vergent specific heat of the Onsager exact solution for the two-dimensional
Ising model precludes an expansion whose coeffcients are analytic func-
tions of temperature. In the 1960s, there appeared a number of (weaker)
scaling hypotheses, based on some general assumptions about the form of
the thermodynamic potentials. Although these scaling hypotheses do not
lead to a microscopic treatment of critical phenomena, they do provide a
way of going beyond the phenomenological equations of van der Waals and
Curie-Weiss. The microscopic justification of these ideas, as well as a real
possibility of calculating values for the critical exponents to compare with
experimental data and theoretical predictions, were provided by the advent
of the modern renormalization-group techniques.

i 4. i Scaling theory of the thermodynamic
potentials

In the neighborhood of a critical point, we assume that the free energy
per spin 9 (T, H) of a simple uniaxial ferromagnet can be written as the
sum of a regular, and less interesting part, 90 (T, H), and a singular part,
98 (T, H), which contains all of the anomalies of the critical behavior. It is
convenient to write the singular part of this thermodynamic potential in
terms of the reduced variables t = (T - Tc) jTc and H, which vanish at the


