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Probabilistic Inference: the problem

For a joint distribution p(x,y) of hidden variables x (or parameter 6 in
a Bayesian setting) and observed data y the posterior is given by

p(x,y)
p(y)

p(xly) =

e The computation of the marginal probability of the data p(y) =

[dx p(x,y) (evidence) requires high dimensional sums or integrals
and is often intractable.

e For the same reasons we often can’'t compute marginals p;(x;|y),
or expectations using these densities.



The Variational Approximation

e Approximate p(x|y) by q(x) € F where F tractable family of distri-
butions such that the Kullback-Leibler divergence

q(x)
p(xly) =

KL(q,p) = / dxq(x) In

IS minimized.

e From p(x|y) = %, we get an upper bound for any ¢

~Inp(y) < F() = [ dx g(x)Ing(x) = Eqlinp(x,y)]

with the variational free energy F'(q)



Example 1: Mean field approximation
Factorizing probability distribution

M
qg(x) = |[ qi(z;)
i=1

Optimal selfconsistent solution: ¢ (x) = %exp {E\i[ln p(x,y)]} with
E\i[. ..] the average over all variables except z;.

Applicable to discrete and continuous random variables.

Neglects dependencies but linear response corrections possible.



Example 2: Gaussian approximation
Gaussian densities gq(x) ~ N (pu,X)
Variational free energy F(q) = —45 log 2n—3 log |X|—5 —Eq[log p(x, y(6)]

Selfconsistency equations

dlogp(x,y|0
o = b, [Losstz®)
Ly
_ 62|09 X,y|0
(= 1)2_]_ = _E, p(x,y|6)

Applicable to continuous variables only (no constraints allowed).



Other popular (in machine learning) approximations

e Loopy belief propagation and its extensions:

Exact on trees, numerically nontrivial when applied to continuous
random variables.

e EXpectation Propagation:

Applicable to discrete and constrained continuous random variables,
allows for dependencies.



Motivation: Minimising the other KL

e [ he reverse KL divergence is

p(x]y)
q(x)

KL(p,q) = /dx p(x[y) In — const — /dx p(x]y) In ¢(x)

o If q(x) =1II; ¢;(z;), we have to minimize
=3 [ dz pialy) In gi(=)
i

which is minimized by the true marginal g; = p;.

e On the other hand for exponential families
g9(x) o b(x) expld ' (x) + g(0)] .

the optimal 8§ must be chosen such that the general moments match
Eq lo(x)] = Eplé(x)]. In general: Intractable !



Examples of exponential families

e Multivariate Gaussian densities ¢(x) = (x, —axx ')

and 6 = (v, ) vields gg(x) o exp[—3x ' Ax + v x].

e Multinomial model: Letxz € {1,...,K}. Set ¢(z) = (¢p1(x),...,dr(x))
with ¢;(z) = 1ifz = j and = 0 else. Hence with § = (6(1),...,0(K))
we have ¢f ' ¢() = 0(@)



Assumed Density Filtering
e Assume data arrive sequentially: Dy41 = y1,92,---,Y+1
e EXxact update of posterior

P(Ys41|x)p(x|Dy)
J dxp(yq1|x)p(x|Ds)

p(X[Dyy1) =

e Replace p(x|Dy41) by parametric approximation gg(x) using the fol-
lowing steps:

— Update:

P(Ys+11X) (1) (%)
J dxp(ys11x)ager) (%)

qo(t) (X|yr41) =

— Project: Minimize

KL (a9(D)Clyey1llao ()
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Example: Bayesian classifier
Classification model: y = sign[hw(s)] = £1 where hw(s) = >, w;¥;(s).

Probit likelihood:

1 yhw(s)
pylw,s) =S+ [ gt)dt

2

N =

with ¢(t) = \/%—We_

D S
Gaussian prior distribution over weights pg(w) x e 225
Posterior distribution p(w|Dyn) = %po(w) [T7—; p(yi|w, s;)
Parametric approximation gy(x) ~ N (w, C)

Moments of qe(t)(w|yt+1) o p(yt+1|wst+1)q9(t)(w) easily computable:
P(Ys+1|W, s441) depends only on single Gaussian >, w;v;(si41)!
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Toy application:

Learning curve for toy d = 50 model (probit likelihood, spherical Gaus-
#data

Sian inputs, realizable random target, o = p ). Dashed line: Bayes
optimal (batch — replica calculation).
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For finite ¢t: Result depends on order of presentation of data terms.
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Gaussian latent variable models
e Set z; = hw(si)

e write the posterior as

_lZ"wiKi'l" n
p(x) = e 2 24 TG T fr(xg)
k=1
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Assumed Density Filtering

Assume target density written as a product of terms

1 N
p(x) = _fo) [ £
1=1

Update: §(x) o fpt1()q(x)

Project: Minimize KL(q|q) wrt q € exponential family — ¢"®"(x)

For exponential families g(x) o exp[A' ¢(x)]
— matching of moments (¢(x))q = (#(x))z-
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Expectation - Propagation (Tom Minka)

1 N
p() = _fo(x) [[ £ix)
1=1

with fg € exponential family. Initialize g;(x); = 1 and repeat until
convergence

e Choose i > 0, remove terms g; i.e. construct q\z-(X) x q(x)/g;(x)

e Update: ¢;(x) = fi(x)q\;(x)

e Project: Minimize K L(q;||q) for g € exponential family — ¢"*"(x)

: . . new q""(x) q"*W(x)gi(x)
e Refine terms: ¢'*"(x) 7. X ES)
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At convergence

e Approximation by q(x) x fo(x)II; g;(x) with tractable g;'s

e g and the tilted distributions

fi(x)
gi(x)

qi(x) o fi(x)q\;(x) = q(x)

have a set of equal moments

(9(x))q = (9(x))q,

for.=1,...,n.
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EP Comments

Fast Algorithm (if convergent), applicable to discrete and contin-
uous variables.

Excellent results for Gaussian latent variable models

Depends on factorization and exponential family chosen for the g;.

Match Ising variables and multivariate Gaussians (KL = c0) 7
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Examples: Discrete variables on graph

e Discrete variables z; € {1,..., K}

p(x) H69k(%’k) I1 i (@i,z;)
k (i5)

e Tractable approximation (factorizing):

q(X) X Heek(wk) H e>‘i—>j(xj)+>\j—>i(33i)
k (i5)

e Tilted distribution (edge (uv) removed).

Ouv (Cﬂu;xv) — Au—sv (va)—)\v—nL(xu)

quv(X) o< g(x)e

1Q



e Moment matching

" (xy) = Z quv(X)

X\ Ty

" (xy) = Z quv(X)

X\CBU



Gaussian latent variable model

e [ he model

1 1y o Kom
p(x) = —e 220 T T fi(ay)
k=1

i — L A2
e Exponential family terms g;(z) = %%~ 2N\

e Approximation
1

1 N
q(x) exp[—EXTKx ~5 > /\ia:iQ +~x]
1=1
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e EP updates

Iterate until convergence:
1. Choose a site ¢

2. Remove ~v;, \;, Integrate out all variables in g except x; — marginal
q;(z;),

3. Compute (z;) and (z?) from g;(z;)
4. Moment matching: recompute marginal ¢g(x;)

5. Recompute ~; and A,



TAP equations

e Sherrington—Kirkpatrick model for N Ising spins S§; = £1 with ran-
dom couplings J;; ~ N(0,1/N)

P(S) xexp | Y S;iJi;S; —I—ZSH

1<J

e Mean field equations (TAP equations, after Thouless, Anderson &
Palmer)

(S;) ~ tanh (ij-j(S Z 2(1— (S )+9>

J

20N



Perturbative (Plefka) approach

Gibbs free energy.
G(m) = min {KL(qllp) | (S)g = m} —InZ

Define one parameter family of models

Pi(S) ox exp |t Z SiJiij + Z S;0;
1<J i

Perturbative approach (Plefka): Expand G¢(m) to O(t2) yields TAP
equations.

Information geometric interpretation and related derivations (Tanaka,
Bhattacharyya & Keerthi, Amari & Ikeda & Shimokawa, Kappen
& Wiegerinck):)

Unfortunately Not exact for other random matrix ensembles! Proper
correction to naive MF depends on statistics of J!
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Consider slightly more general class of models

p(x) = e D R fi(24)
k

allows for latent Gaussian models but also discrete variables (spins) by
taking

fr(z) = % (8(x — 1) + 6(z + 1))

919)



Cavity approach

p(x) = p(x1,...,%i—1,T4 Tig 15+, TN)
x fi(zi)explz; Y Jijzs] p(x\)
JEN (4) .
h,

Hence

pi(@i, Xpr(5)) o< fil@i) explzihi (Xar(i))] P (Xpar())

We can write

pi(z, h) o< fi(z) e p\;(h)

when we introduce the 'cavity field’ distribution

pi(R) = 3 o h— >, Jiz;| pi(Xare)
XN (4) JEN (i)

2









Weak dependencies:

e Approximate p\i(h) by Gaussian (central limit theorem)

a2
p\i(h) o exp[—{5E0].

pi(@) ~ [ piCe,h)dh o fi(x) [ €™ py(h)dn

=~ i(e) exp |aiz + 7]

1

Derive set of nonlinear equations for 2N unknowns ~;, V;!

e Ve use

i) = [ do [piCam) han = [ o fi(@) [ dhhe™ p(h) ~ ot Vi

9]



TAP Equations

e Hence, using (h;) = 3; J;j(z;) we get

Z ng z' z>

e Naive computation

Vi =" Jijdiss ({z5mph; — <fL‘j>\i><ka>\i)
ik
Z ( x3>2>

leads us back to the SK Onsager term

D°A



(adaptive) TAP equations:

e Replace surrounding nodes by auxiliary model with f;(x) — g;(x) =

Ip 2
e~ 2N TV with ~;, A; chosen s.t. moments (z;) and (22). As-

sume we get the same cavity fields (generalizes an idea of Parisi &
Potters).

o Let
_ | o Vi 2 5 — | o V2
Z; = [ dx f;(x) exp |a;xz + 5 Z; = [ dx g;(x) exp |a;xz + 5

e Hence, we have

d .
(z;) = —|nZi=—|nZZ=%+a7'
dai 1 /\Z_‘/’L
d? N 1
2 2
22y — (V¢ = —InZ;, = —1InZ: =
(x5) — () aiz ; a@g ; "

On the other hand, by direct computation

(A=)~ 1),
[(A - J)_l]ii

S
8

.

~—

—~
8
N
~
|
—~
8
S
N
|
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e Eliminiating a;, \;,v;, V; (numerically) we get closed set of equations
for moments (z;), (z?) fori=1,...,N.

e [ his corresponds to the fixed points of EP, when applied to latent
Gaussian model family and projections to multivariate Gaussians of

the form

1 1Y
g(x) eXD[EXTJX ~5 > /\7;387;2 +~'x]

1=1

e Moment matching makes sense, even when KL projection = oo !



Consistency of cavity field: Bayes classifier

Remove variable x; from system and compute average cavity field
(il = 25 Jij{Tin

e ‘‘exactly”: by solving the TAP equations on N — 1 variable system

= (hay V.

e Using the generalized TAP approximation for P\

1

e Next page: yi(hi>§z'.\'_1) as function of y7;<h7;>\'

DQ






Toy Model: Linear regression with binary variables

y(k) = N ;588 4 50e(k) with z; = +1. s;(k) i.i.d. Gaussian of unit

NN
variance and o3 = 0.2,

Testerror vs —#data

(N = 60 & asymptotic analytical result)

Minimal Free Energy
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T hermodynamic limit

Assume f;(x) = f(x), and the statistics of J defined by generating
function

1 1
Nln ez 171ace (AN~ Trace G(A/N)
J

Assume V; = V self—averaging.
Disorder average: (Indet(A —J));=>,;In(\; —7) + Nri — 2NG(r)

Order parameter equations give

_ 1 1 1 ooy o
" N%:Az—f_]\f%:<<x’&> <xz>)—X—>V_r

2G' (1)

r

This yields V = G'(x) and agrees with known results of (Parisi &
Potters)
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Free energy from cavity approach

e Introduce variable interaction strength

1
pt(x) = &P |t > xidijzi| 1] fe(zx)
| (i5) k

e Gibbs Free energy

1

Gi(m, M) = min {KL(qllp) [(Si)q = mi; (S7)g = M;,¥i} — In Z;

e Differentiating gives

aGt(ma M) 1 1
ot = —5 ZmZJZ]mJ — 5TI’(C1§J>

1,]

21



e Inserting Gaussian approximation C; ~ (A—tJ)_l and integrating,
we obtain

1
G = G]_ — GO — 52”%*]@]7”3
]
1 1 oo 1 5
1 1

e [ his can be written as

G = GGauss + GO . G(OSauss



