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Lecture 1

• Inference and variational approximations (mean field & Gaussian)

• The ’other KL’ and assumed density filtering

• Expectation propagation as an algorithm

• TAP equations

• Free energy from TAP
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Lecture 2

• EP free energy

• Correcting EP: Cluster expansion

• Correcting EP: Cumulant expansion

• Applications



Probabilistic Inference: the problem

For a joint distribution p(x,y) of hidden variables x (or parameter θ in

a Bayesian setting) and observed data y the posterior is given by

p(x|y) =
p(x,y)

p(y)

• The computation of the marginal probability of the data p(y) =∫
dx p(x,y) (evidence) requires high dimensional sums or integrals

and is often intractable.

• For the same reasons we often can’t compute marginals pi(xi|y),

or expectations using these densities.
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The Variational Approximation

• Approximate p(x|y) by q(x) ∈ F where F tractable family of distri-

butions such that the Kullback-Leibler divergence

KL(q, p) =
∫
dxq(x) ln

q(x)

p(x|y)
≥ 0

is minimized.

• From p(x|y) = p(x,y)
p(y) , we get an upper bound for any q

− ln p(y) ≤ F (q)
.

=
∫
dx q(x) ln q(x)− Eq[ln p(x,y)]

with the variational free energy F (q)
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Example 1: Mean field approximation

• Factorizing probability distribution

q(x) =
M∏
i=1

qi(xi)

• Optimal selfconsistent solution: q∗i (x) = 1
Zi

exp
{
E\i[ln p(x,y)]

}
with

E\i[. . .] the average over all variables except xi.

• Applicable to discrete and continuous random variables.

• Neglects dependencies but linear response corrections possible.
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Example 2: Gaussian approximation

• Gaussian densities q(x) ∼ N (µµµ,ΣΣΣ)

• Variational free energy F (q) = −N2 log 2π−1
2 log |ΣΣΣ|−N2−Eq[log p(x,y|θθθ)]

• Selfconsistency equations

0 = Eq

[
∂ log p(x,y|θθθ)

∂xi

]

(ΣΣΣ−1)ij = −Eq
[
∂2 log p(x,y|θθθ)

∂xi∂xj

]

• Applicable to continuous variables only (no constraints allowed).
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Other popular (in machine learning) approximations

• Loopy belief propagation and its extensions:

Exact on trees, numerically nontrivial when applied to continuous

random variables.

• Expectation Propagation:

Applicable to discrete and constrained continuous random variables,

allows for dependencies.
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Motivation: Minimising the other KL

• The reverse KL divergence is

KL(p, q) =
∫
dx p(x|y) ln

p(x|y)

q(x)
= const−

∫
dx p(x|y) ln q(x)

• If q(x) =
∏
i qi(xi), we have to minimize

−
∑
i

∫
dx pi(x|y) ln qi(x)

which is minimized by the true marginal qi = pi.

• On the other hand for exponential families

qθ(x) ∝ b(x) exp[θθθ>φφφ(x) + g(θθθ)] .

the optimal θ must be chosen such that the general moments match

Eq[φφφ(x)] = Ep[φφφ(x)]. In general: Intractable !
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Examples of exponential families

• Multivariate Gaussian densities φ(x) = (x,−1
2xx>)

and θ = (γ, λ) yields qθ(x) ∝ exp[−1
2x>λx + γ>x].

• Multinomial model: Let x ∈ {1, . . . ,K}. Set φ(x) = (φ1(x), . . . , φK(x))

with φj(x) = 1 if x = j and = 0 else. Hence with θ = (θ(1), . . . , θ(K))

we have eθ
>φ(x) = eθ(x)
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Assumed Density Filtering

• Assume data arrive sequentially: Dt+1 = y1, y2, . . . , yt+1

• Exact update of posterior

p(x|Dt+1) =
p(yt+1|x)p(x|Dt)∫
dxp(yt+1|x)p(x|Dt)

.

• Replace p(x|Dt+1) by parametric approximation qθ(x) using the fol-

lowing steps:

– Update:

qθ(t)(x|yt+1) =
p(yt+1|x)qθ(t)(x)∫
dxp(yt+1|x)qθ(t)(x)

.

– Project: Minimize

KL
(
qθ(t)(·|yt+1)||qθ(·)

)
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Example: Bayesian classifier

• Classification model: y = sign[hw(s)] = ±1 where hw(s) =
∑
j wjψj(s).

• Probit likelihood:

p(y|w, s) =
1

2
+
∫ yhw(s)

0
g(t)dt

with g(t) = 1√
2π
e−

1
2t

2
.

• Gaussian prior distribution over weights p0(w) ∝ e−
1
2

∑
j w

2
j

• Posterior distribution p(w|Dn) = 1
Zp0(w)

∏n
i=1 p(yi|w, si)

• Parametric approximation qθ(x) ∼ N (ŵ,C)

• Moments of qθ(t)(w|yt+1) ∝ p(yt+1|wst+1)qθ(t)(w) easily computable:
p(yt+1|w, st+1) depends only on single Gaussian

∑
j wjψj(st+1)!
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Toy application:

Learning curve for toy d = 50 model (probit likelihood, spherical Gaus-

sian inputs, realizable random target, α
.

= #data
d ). Dashed line: Bayes

optimal (batch – replica calculation).

For finite t: Result depends on order of presentation of data terms.
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Gaussian latent variable models

• Set xi
.

= hw(si)

• write the posterior as

p(x) =
1

Z
e
−1

2

∑
ij xiKijxj

n∏
k=1

fk(xk)
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Assumed Density Filtering

• Assume target density written as a product of terms

p(x) =
1

Z
f0(x)

N∏
i=1

fi(x)

• Update: q̂(x) ∝ fn+1(x)q(x)

• Project: Minimize KL(q̂|q) wrt q ∈ exponential family → qnew(x)

• For exponential families q(x) ∝ exp[λ>φ(x)]

→ matching of moments 〈φ(x)〉q = 〈φ(x)〉q̂.
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Expectation - Propagation (Tom Minka)

p(x) =
1

Z
f0(x)

N∏
i=1

fi(x)

with f0 ∈ exponential family. Initialize gi(x)i = 1 and repeat until

convergence

• Choose i > 0, remove terms gi i.e. construct q\i(x) ∝ q(x)/gi(x)

• Update: qi(x) = fi(x)q\i(x)

• Project: Minimize KL(qi||q) for q ∈ exponential family → qnew(x)

• Refine terms: gnew
i (x) ∝ qnew(x)

q\i(x) ∝
qnew(x)gi(x)

q(x)
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At convergence

• Approximation by q(x) ∝ f0(x)
∏
i gi(x) with tractable gi’s.

• q and the tilted distributions

qi(x) ∝ fi(x)q\i(x) = q(x)
fi(x)

gi(x)

have a set of equal moments

〈φ(x)〉q = 〈φ(x)〉qi
for i = 1, . . . , n.

16



EP Comments

• Fast Algorithm (if convergent), applicable to discrete and contin-

uous variables.

• Excellent results for Gaussian latent variable models

• Depends on factorization and exponential family chosen for the gi.

• Match Ising variables and multivariate Gaussians (KL =∞) ?

17



Examples: Discrete variables on graph

• Discrete variables xi ∈ {1, . . . ,K}

p(x) ∝
∏
k

eθk(xk) ∏
(ij)

eθij(xi,xj)

• Tractable approximation (factorizing):

q(x) ∝
∏
k

eθk(xk) ∏
(ij)

eλi→j(xj)+λj→i(xi)

• Tilted distribution (edge (uv) removed).

quv(x) ∝ q(x)eθuv(xu,xv)−λu→v(xv)−λv→u(xu)
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• Moment matching

qnew(xu) =
∑

x\xu
quv(x)

qnew(xv) =
∑

x\xv
quv(x)



Gaussian latent variable model

• The model

p(x) =
1

Z
e
−1

2

∑
ij xiKijxj

n∏
k=1

fk(xk)

• Exponential family terms gi(x) = eγixi−
1
2Λix

2
i

• Approximation

q(x) ∝ exp[−
1

2
x>Kx−

1

2

N∑
i=1

Λix
2
i + γ>x]

.
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• EP updates

Iterate until convergence:

1. Choose a site i

2. Remove γi,Λi, Integrate out all variables in q except xi →marginal

qi(xi),

3. Compute 〈xi〉 and 〈x2
i 〉 from qi(xi)

4. Moment matching: recompute marginal q(xi)

5. Recompute γi and Λi



TAP equations

• Sherrington–Kirkpatrick model for N Ising spins Si = ±1 with ran-

dom couplings Jij ∼ N (0,1/N)

P (S) ∝ exp

∑
i<j

SiJijSj +
∑
i

Siθi



• Mean field equations (TAP equations, after Thouless, Anderson &

Palmer)

〈Si〉 ≈ tanh

∑
j

Jij〈Sj〉 − 〈Si〉
∑
j

J2
ij(1− 〈Sj〉2) + θi


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Perturbative (Plefka) approach

• Gibbs free energy.

G(m) = min
q
{KL(q||p) | 〈S〉q = m} − lnZ

• Define one parameter family of models

Pt(S) ∝ exp

t∑
i<j

SiJijSj +
∑
i

Siθi


Perturbative approach (Plefka): Expand Gt(m) to O(t2) yields TAP
equations.

• Information geometric interpretation and related derivations (Tanaka,
Bhattacharyya & Keerthi, Amari & Ikeda & Shimokawa, Kappen
& Wiegerinck):)

• Unfortunately Not exact for other random matrix ensembles! Proper
correction to naive MF depends on statistics of J!
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(Hopfield Model: Kabashima & Saad):

Jij =
∑αN
µ=1 ξ

µ
i ξ
µ
j with i.i.d. ξµi of variance β

N



Consider slightly more general class of models

p(x) = e
∑

(kl) xkJklxl
∏
k

fk(xk)

allows for latent Gaussian models but also discrete variables (spins) by

taking

fk(x) = eθkx (δ(x− 1) + δ(x+ 1))

.
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Cavity approach

p(x) = p(x1, . . . , xi−1, xi, xi+1, . . . , xN)

∝ fi(xi) exp[xi
∑

j∈N (i)

Jijxj︸ ︷︷ ︸
hi

] p\i(x\i)

Hence

pi(xi,xN (i)) ∝ fi(xi) exp[xihi(xN (i))] p\i(xN (i))

We can write

pi(x, h) ∝ fi(x) exh p\i(h)

when we introduce the ’cavity field’ distribution

p\i(h) =
∑

xN (i)

δ

h− ∑
j∈N (i)

Jijxj

 p\i(xN (i))
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Weak dependencies:

• Approximate p\i(h) by Gaussian (central limit theorem)

p\i(h) ∝ exp[−(h−ai)2

2Vi
].

pi(x) ≈
∫
pi(x, h)dh ∝ fi(x)

∫
exh p\i(h)dh

=
1

Zi
fi(x) exp

[
aix+

Vi
2
x2
]

Derive set of nonlinear equations for 2N unknowns γi, Vi!

• We use

〈hi〉 =
∫
dx
∫
pi(x, h) h dh =

1

Zi

∫
dx fi(x)

∫
dh h exh p\i(h) ≈ ai+Vi〈xi〉
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TAP Equations

• Hence, using 〈hi〉 =
∑
j Jij〈xj〉 we get

ai =
∑
j

Jij〈xj〉 − Vi〈xi〉

• Naive computation

Vi =
∑
jk

JijJik
(
〈xjxk〉\i − 〈xj〉\i〉〈xk〉\i

)
≈
∑
j

J2
ij

(
〈x2
j 〉 − 〈xj〉

2
)

leads us back to the SK Onsager term
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(adaptive) TAP equations:

• Replace surrounding nodes by auxiliary model with fi(x)→ gi(x) =

e−
1
2Λix

2+γix with γi,Λi chosen s.t. moments 〈xi〉 and 〈x2
i 〉. As-

sume we get the same cavity fields (generalizes an idea of Parisi &
Potters).

• Let

Zi =
∫
dx fi(x) exp

[
aix+

Vi
2
x2
]

Z̃i =
∫
dx gi(x) exp

[
aix+

Vi
2
x2
]

• Hence, we have

〈xi〉 =
d

dai
lnZi =

d

dai
ln Z̃i =

γi + ai
Λi − Vi

〈x2
i 〉 − 〈xi〉

2 =
d2

da2
i

lnZi =
d2

da2
i

ln Z̃i =
1

Λi − Vi
On the other hand, by direct computation

〈xi〉 = ((Λ− J)−1γ)i
〈x2
i 〉 − 〈xi〉

2 =
[
(Λ− J)−1

]
ii
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• Eliminiating ai,Λi, γi, Vi (numerically) we get closed set of equations

for moments 〈xi〉, 〈x2
i 〉 for i = 1, . . . , N .

• This corresponds to the fixed points of EP, when applied to latent

Gaussian model family and projections to multivariate Gaussians of

the form

q(x) ∝ exp[
1

2
x>Jx−

1

2

N∑
i=1

Λix
2
i + γ>x]

• Moment matching makes sense, even when KL projection =∞ !



Consistency of cavity field: Bayes classifier

Remove variable xi from system and compute average cavity field

〈hi〉\i
.

=
∑
j Jij〈xj〉\i

• “exactly”: by solving the TAP equations on N − 1 variable system

→ 〈hi〉
(N−1)
\i .

• Using the generalized TAP approximation for p\i.

• Next page: yi〈hi〉
(N−1)
\i as function of yi〈hi〉\i
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Toy Model: Linear regression with binary variables

y(k) =
∑N
i=1 xi

si(k)√
N

+ σ0ξ(k) with xi = ±1. si(k) i.i.d. Gaussian of unit

variance and σ2
0 = 0.2.

Testerror vs #data
#variables

(N = 60 & asymptotic analytical result)
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Thermodynamic limit

• Assume fi(x) = f(x), and the statistics of J defined by generating
function

1

N
ln
[
e

1
2Trace (AJ)

]
J
' Trace G(A/N)

• Assume Vi = V self–averaging.

• Disorder average: 〈ln det(Λ− J)〉J =
∑
i ln(λi − r̂) +Nrr̂ − 2NG(r)

• Order parameter equations give

r =
1

N

∑
i

1

λi − r̂
=

1

N

∑
i

(
〈x2
i 〉 − 〈xi〉

2
)
≡ χ→ V = r̂

r̂ = 2G′(r)

• This yields V = G′(χ) and agrees with known results of (Parisi &
Potters)
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Free energy from cavity approach

• Introduce variable interaction strength

pt(x) =
1

Z
exp

t∑
(ij)

xiJijxj

∏
k

fk(xk)

• Gibbs Free energy

Gt(m,M) = min
q

{
KL(q||p) |〈Si〉q = mi; 〈S2

i 〉q = Mi, ∀i
}
− lnZt

• Differentiating gives

∂Gt(m,M)

∂t
= −

1

2

∑
i,j

miJijmj −
1

2
Tr(CtJ)
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• Inserting Gaussian approximation Ct ≈ (Λ− tJ)−1 and integrating,

we obtain

G ≡ G1 = G0 −
1

2

∑
ij

miJijmj

−
1

2
ln det(Λ− J)−

1

2

∑
i

Vi(Mi −m2
i ) +

1

2

∑
i

ln(Mi −m2
i )

• This can be written as

G = GGauss +G0 −GGauss
0


