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TAP Gibbs free energy

o Set ¢(z) = (z,—2), p= ((6(z1)), ..., (¢(x1)))

Grap(p) = G () 4+ Go(p) — G52 ()
e Dual representation with \; = (~;, \;)
ZGaUSS(A) — /deO(X) BZ;N:1 )\;r(b(iﬁz)
Zo) = [dx]] fi0) eXimi o)

Z§S(N) = /dx ezf\f:l A (i)

e Using G(u) = max,, {— InZ(\) + ATu} and setting V,Grap(p) =0
we get

—INZ = —InZvap = — In Z%"S(\1) — In Zg(X\2) + In Z52"5(A1 + A2)
where the right hand side must be made stationary wrt the ;.
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Double loop algorithms
Approximate Gibbs Free Energies are often not convex.

In many cases, free energies have the form Gapprox(t) = G4(n) — Gp(p)
with G4 g convex.

The following type of algorithm is guaranteed not to increase Gapprox-

Repeat.:

e Upper bound concave function —Gpg by linear function
—Gp(p) < L(p) = —Gp(pod) — (B — pold) VG B(Hoid)

e Minimise convex function G4(u) + L(p) and get — pinew



Improving the accuracy of EP

e Choosing more structured families ¢(x):

1. For discrete models on graphs, replace factorizing g by tree
(Minka & Qi, 2004).

2. Use Gaussian models with tree consistency.

e Corrections after EP converges



EP with tree consistency & corrections

Let 7 be a tree. Rewrite Gaussian latent variable (e.g. Ising) as

1 1 _ I] m,n Tfm(xm)fn(xn>
p(X) — E exD[—ixTK 1X] ( l_ij fn(xn)dn_l

approximated by Gaussian

H(m,n)E’T gm,n(xma Tn)
I1n gn(xn)dn_l

1
q(x) = exp[—EXTK_lx]

Consistency on (zp), (z2) and (zpmzy) for (m,n) € T is required.



Relating EP and exact model

e Exact distribution

pG) = TG0
e EP approximation
169 = - T[900
q n

e tilted distribution

1G®m@v.

gn(x) = Z In(X)



e Solving for f, yields

_ Zngn(X)gn(x)\ _ < qn(X)
I;Ifn(X)—H< () ) = ZEgp q( )1;[<q(x)>

n

e with the definition of the EP free energy

Zpp =2Zq || Zn .
n

e Define

Feo =11 (q&%})

then
R=17/Zpp = [ a(x)F(x)dx

e Similarly we can write:

pG) = S TT a0 = “22 4GP = 1 aGOFG)



Expansion I: Clusters

e Assume en(x) = % — 1 to be typically small. Expand products

4(x) (1 + Znen(x) + Sy cng enq (Xeny () + )

pix) = TF Sy <y (En1 (Dena GO, + - ’

in terms of growing clusters of ‘“interacting” variables e,(x).

e In a similar way

Z =14+ Z <5n1 (X)gnQ(X)>q + Z <5n1(x)5n2(x)5n3(x)>q + ...

Zgp n1<no n1<na<nia
First order -, (en(x)), = O.



First order correction to posterior

Correction to posterior in first order e,(x) is simple:

p(x) = ) qn(x) — (N — 1)q(x) .

Does not require computation of expectations !

In an similar spirit (Czeke & Heskes) one gets for the marginal

N o NP F1CTD)
p(x;) =~ q;( z)]];;[i/d ]Q( ]l Z)gj(ajj)




Example I: Bayesian mixture of Gaussians

Likelihood term for data point (:

fn(x) =3 TN (Cni s TR )

Latent variables: x = {my, ux, [<}5_; (weights, means, precision
matrix)

Prior fo(x) = D(m) [I, NW(x, k).
Posterior p(x|¢1,...,¢N) = % [In>0 fn(X)

q(x) = D(mw) [1. N\W(uk, ) follows prior.
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Results I: 1st order cluster corrections to posteriors
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Posterior for toy mixture model (grey lines: exact).

Left: EP, right: 1st order correction
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Results II: 2nd order cluster corrections to In~Z
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Gaussian mixture model on acidity data set

Variational Bayes (red squares), Minka's o = ( )-divergence message
passing (magenta triangles); EP (blue circles); EP with the 2"9 order
correction (green diamonds).

Corrections may lead to changes in estimation of model order !

19



e
]
T

0.25

«|D) and approximations
o
o o o
- a N
T

p(gc

o

Marginal posterior at test point for toy Gaussian process classifica-
tion,

blue: EP and red: 1. order correction compared to MCMC estimate
(grey).
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Expansion II: Cumulants for latent Gaussian models

e Latent Gaussian models

1 1 B _
p(x) = ~ exp[_EXTK L TT fu(an) =
mn
1 _ 1 2
q(x) X exp[_EXTK—IX] li.efynx_jAnx
n

e [ he tilted density is defined as

1 <Q(X>fn(33n)>
Zn gn(il?n)

gn(x) =

1A



e Simplify correction to partition function

"= / dx q(x) H (qn(X)> / dx q(x) H (q(x\nxw%(wn))

q(x\p|zn)q(zn)

_ / dx q(x) H (q”(‘””)>

q(xn)

e gn(x) and q(x) agree in 1. and 2. cumulant.

e Possible assumption: Higher cumulants are small. Try an ex-
pansion in these higher cumulants !



Cumulants

e Characteristic function

)= [~ 2%

—oo (27) e_ikxnxn(k)

e Cumulants are defined by

C 1
Inxn(k) = Z(i)llill k' = imnk — §Snk2 + rn(k)
l |

The term r(k) = Y;>3(3)!9e k! contains the contributions of all
higher cumulants.
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Cumulant expansion for partition function

e \We have

2
an(an) _ \@e(a:ggzmg) /oo dk e~ tkTny () =
q(n) 2n —oo (2m)

00 2 _
I e e e A ]

S’I’L’I’L

Z gn(zn)

EP n \ q(zn)
we must take expectation over the multivariate Gaussian ¢(x) =
N(x;m,S).
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e Introduce complex zero mean Gaussian random vector

Zn:nn_zxn—mn
Snn
with
(2f), = O
e T hen



Power series expansion

for small ¢, (I > 2):

In (L) _ Ini — In <exp [Zrn (zn)

)

ZEp ZEPp
1 Cy,, C S l
:§Z<rmrn>zi... = Z Z l”lllm(s gm ):I:
m¥£n m#£=n >3 ' nn=mm

No “self interactions” (loops) ! This indicates that corrections may
not scale with N.
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Conjecture: EP is fairly accurate if:

e the cumulants ¢;, are small. This holds possibly for classification

likelihoods f;(x;) = ©(y;x;), when posterior variance small com-
pared to the mean.

Ry

e if posterior covariances S;; small for 2 .
17 J
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Cumulant corrections

log R (EP 2nd order)
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log R (MCMC particles)
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In <L> for GP classification on USPS data
Zpp

left: analytical, right: Monte Carlo

10



AD Free energy

Ising with N = 10 (J random, variance 32). Error on —In Z (Ising, 2nd
order, | = 3,4,5) for EP (blue), EP 2"9 order | = 4 corrections (blue
with triangles), loopy BP (dashed green) and Kikuchi or generalized
LBP (dash—dotted red).
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Ising with N = 10 (J random, variance 2). Error on covariance matrix
for EP (blue), EP 2"9 order | = 4 corrections (blue with triangles),
loopy BP (dashed green) and Kikuchi or generalized LBP (dash—dotted
red).



Graph | Coupling | dcoup EP EP c EP t EP tc
Repulsive | 0.25 | 0.0310 | 0.0018 | 0.0104 | 0.0010
Repulsive | 0.50 | 0.3358 | 0.0639 | 0.1412 | 0.0440

Full Mixed 0.25 | 0.0235 | 0.0013 | 0.0129 | 0.0009
Mixed 0.50 | 0.3362 | 0.0655 | 0.1798 | 0.0620
Attractive | 0.06 | 0.0236 | 0.0028 | 0.0166 | 0.0006
Attractive | 0.12 | 0.8297 | 0.1882 | 0.2672 | 0.2094
Repulsive | 1.0 | 1.7776 | 0.8461 | 0.0279 | 0.0115
Repulsive | 2.0 | 4.3555 | 2.9239 | 0.0086 | 0.0077

Grid Mixed 1.0 | 0.3539 | 0.1443 | 0.0133 | 0.0039
Mixed 2.0 | 1.2960 | 0.7057 | 0.0566 | 0.0179
Attractive | 1.0 | 1.6114 | 0.7916 | 0.0282 | 0.0111
Attractive | 2.0 | 4.2861 | 2.9350 | 0.0441 | 0.0433

Average absolute deviation of In Z function in a Wainwright-Jordan set-
up (N = 16), comparing EP, EP with [ = 4 second order correction
(EP ¢), EP tree (EP t) and EP tree with [ = 4 second order correction
(EP to).
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GP in a box

p(x) = %1;[]1[|wn| < a] N(x;0 K) .

0.2 0.4 0.6 0.8

919)

(1)



log Z

EP

EP + C, correction

x EP+ C, + Cq correction

® o MCMC
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TrueSkill™ Ranking System

The TrueSkill™ ranking system is a skill based ranking system for
Xbox Live developed at Microsoft Research.

The TrueSkill ranking system is a skill based ranking system for Xbox Live developed at Microsoft
Research. The purpose of a ranking system is to both identify and track the skills of gamers in a game
(mode) in order to be able to match them into competitive matches. The TrueSkill ranking system only
uses the final standings of all teams in a game in order to update the skill estimates (ranks) of all
gamers playing in this game. Ranking systems have been proposed for many sports but possibly the
most prominent ranking system in use today is ELO.

Ranking Players

So, what is s0 special about the TrueSkill ranking system? In short, the biggest difference to other
ranking systems is that in the TrueSkill ranking system skill is characterised by two numbers:

» The average skill of the gamer (M in the picture).
» The degree of uncertainty in the gamer's skill (& in the picture).

List of further EP applications

http://research.microsoft.com/en-us/um/people/minka/papers/ep/roadmap.htr
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Bootstrap estimators for Gaussian process regression

models

e Goal: Estimate average case properties (test errors) of statistical
estimator

e Bootstrap: Generate pseudo data via resampling with replacement,
replace true (unknwon) distribution by emperirical distribution.

Problem: Each sample requires new running of algorithm.

e [ry approximate analytical approach instead!
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Approximate Analytical Bootstrap

e Bootstrap generalization error

L1 L Ep {57%0 (Elx;| D] — yi)Q}
e(m) = NZ; Ep [57”/2'70]

with m; random “occupation number” of datapoint .

e EXxact average with replica trick

N

> Ep [bm,0 2"
1=1

/dxldx2 pO(X(l)) po(X(Q)) P(D|X(1)) P(D|X(2)) (xgl) — Y;) (37@(2) — yz)]

=(m) = Ai_r)no e—m/N N

e Perform EP inference and let n — O.
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Results for Regression and SVM classification
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Generalized Models

p(x) o H fi(x;) exp {Z wz']zng] H F

i<J
can be cast into the form

p(o) o II; pi(o;) exp [Zi<j Uz'AijO'j}
with augmented set of "random variables”
o= (x,X)

and terms p;(c;) = f;(z;) f;(Z), where

fi(@) = [ g5 Fy(h)

The augmented coupling matrix is

J J
= (32)
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Inference in continuous time stochastic dynamics

Prior process (Ornstein—Uhlenbeck)

de; = (Awxs + cp)dt + Bt

1/2

th7

Likelihood for continuous and discrete time observations

p({yl}i, {ygt {ze}) o [ p(yi|ze,) x exp
t;€Ty

Time discretized version

{— /OldtV(t, Yy a:t)}

p({yi}i, y% @) = po(x) x [] p(ui|ar,) [T exp { AtV (tg, yf 1) |
1 k

Does EP survive the At — 0 limit 7

DQ



Prior and posterior means and standard deviations 3 I\Y/Iarglnalxdlstrlbuxtlons at }=0'3353 : :
25
sampling at 1073
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The continuous time potential is defined as V (¢, x¢) = (th)8l[1/2,2/3] (t)
and we assume two hard box discrete likelihood terms Ij_g 55 g.251(%t;)
and Ii_q 25 0.05)(2t,) Placed at ¢t; = 1/3 and ¢p = 2/3. The prior is
defined by the parameters a; = —1, ¢ = 4w cos(4nt) and by = 4.



Some open problems

Scaling up to large systems when approximations are structured,
parallelization.

Convergence properties

Bounds on free energies

Performance bounds (PAC—Bayes ?)
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