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TAP Gibbs free energy

• Set φ(x) = (x,−x2), µµµ = (〈φ(x1)〉, . . . , 〈φ(x1)〉)

GTAP(µµµ) = GGauss(µµµ) +G0(µµµ)−GGauss
0 (µµµ)

• Dual representation with λi = (γi,Λi)

ZGauss(λ) =
∫
dxf0(x) e

∑N
i=1 λ

>
i φφφ(xi)

Z0(λ) =
∫
dx
∏
i

fi(x) e
∑N
i=1 λ

>
i φφφ(xi)

ZGauss
0 (λ) =

∫
dx e

∑N
i=1 λ

>
i φφφ(xi)

• Using G(µµµ) = maxλ
{
− lnZ(λ) + λTµµµ

}
and setting ∇µµµGTAP(µµµ) = 0

we get

− lnZ = − lnZTAP = − lnZGauss(λ1)− lnZ0(λ2) + lnZGauss
0 (λ1 + λ2)

where the right hand side must be made stationary wrt the λi.
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Double loop algorithms

Approximate Gibbs Free Energies are often not convex.

In many cases, free energies have the form Gapprox(µµµ) = GA(µµµ)−GB(µµµ)

with GA,B convex.

The following type of algorithm is guaranteed not to increase Gapprox.

Repeat:

• Upper bound concave function −GB by linear function

−GB(µµµ) ≤ L(µµµ) = −GB(µµµold)− (µµµ−µµµold)∇GB(µµµold)

• Minimise convex function GA(µµµ) + L(µµµ) and get → µµµnew
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Improving the accuracy of EP

• Choosing more structured families q(x):

1. For discrete models on graphs, replace factorizing q by tree

(Minka & Qi, 2004).

2. Use Gaussian models with tree consistency.

• Corrections after EP converges
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EP with tree consistency & corrections

Let T be a tree. Rewrite Gaussian latent variable (e.g. Ising) as

p(x) =
1

Z
exp[−

1

2
x>K−1x]

∏
(m,n)∈T fm(xm)fn(xn)∏

n fn(xn)dn−1

approximated by Gaussian

q(x) = exp[−
1

2
x>K−1x]

∏
(m,n)∈T gm,n(xm, xn)∏

n gn(xn)dn−1

Consistency on 〈xn〉, 〈x2
n〉 and 〈xmxn〉 for (m,n) ∈ T is required.
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Relating EP and exact model

• Exact distribution

p(x) =
1

Z

∏
n
fn(x)

• EP approximation

q(x) =
1

Zq

∏
n
gn(x)

• tilted distribution

qn(x) =
1

Zn

(
q(x)fn(x)

gn(x)

)
.
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• Solving for fn yields

∏
n
fn(x) =

∏
n

(
Znqn(x)gn(x)

q(x)

)
= ZEP q(x)

∏
n

(
qn(x)

q(x)

)

• with the definition of the EP free energy

ZEP = Zq
∏
n
Zn .

• Define

F (x) ≡
∏
n

(
qn(x)

q(x)

)
then

R = Z/ZEP =
∫
q(x)F (x) dx ,

• Similarly we can write:

p(x) =
1

Z

∏
n
fn(x) =

ZEP
Z

q(x)F (x) =
1

R
q(x)F (x) .
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Expansion I: Clusters

• Assume εn(x) = qn(x)
q(x) − 1 to be typically small. Expand products

p(x) =
q(x)

(
1 +

∑
n εn(x) +

∑
n1<n2

εn1(x)εn2(x) + . . .
)

1 +
∑
n1<n2

〈εn1(x)εn2(x)〉q + . . .
,

in terms of growing clusters of “interacting” variables εn(x).

• In a similar way

Z

ZEP
= 1 +

∑
n1<n2

〈
εn1(x)εn2(x)

〉
q

+
∑

n1<n2<n3

〈
εn1(x)εn2(x)εn3(x)

〉
q

+ . . .

First order
∑
n 〈εn(x)〉q = 0.
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First order correction to posterior

Correction to posterior in first order εn(x) is simple:

p(x) ≈
∑
n
qn(x)− (N − 1)q(x) .

Does not require computation of expectations !

In an similar spirit (Czeke & Heskes) one gets for the marginal

p(xi) ≈ qi(xi)
∏
j 6=i

∫
dxjq(xj|xi)

fj(xj)

gj(xj)
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Example I: Bayesian mixture of Gaussians

• Likelihood term for data point ζn:

fn(x) =
∑
κ
πκN (ζn;µµµκ,Γ

−1
κ )

• Latent variables: x = {πκ,µµµκ,Γκ}Kκ=1 (weights, means, precision

matrix)

• Prior f0(x) = D(π)
∏
κNW(µµµκ,Γκ).

• Posterior p(x|ζ1, . . . , ζN) = 1
Z

∏
n≥0 fn(x)

• q(x) = D(π)
∏
κNW(µµµκ,Γκ) follows prior.
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Results I: 1st order cluster corrections to posteriors

Posterior for toy mixture model (grey lines: exact).

Left: EP, right: 1st order correction
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Results II: 2nd order cluster corrections to lnZ

Gaussian mixture model on acidity data set

Variational Bayes (red squares), Minka’s α = (1
2)-divergence message

passing (magenta triangles); EP (blue circles); EP with the 2nd order
correction (green diamonds).

Corrections may lead to changes in estimation of model order !
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Marginal posterior at test point for toy Gaussian process classifica-

tion,

blue: EP and red: 1. order correction compared to MCMC estimate

(grey).
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Expansion II: Cumulants for latent Gaussian models

• Latent Gaussian models

p(x) =
1

Z
exp[−

1

2
x>K−1x]

∏
n
fn(xn) ≈

q(x) ∝ exp[−
1

2
x>K−1x]

∏
n
eγnx−

1
2λnx

2

• The tilted density is defined as

qn(x) =
1

Zn

(
q(x)fn(xn)

gn(xn)

)
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• Simplify correction to partition function

R =
∫
dx q(x)

∏
n

(
qn(x)

q(x)

)
=
∫
dx q(x)

∏
n

q(x\n|xn)qn(xn)

q(x\n|xn)q(xn)


=
∫
dx q(x)

∏
n

(
qn(xn)

q(xn)

)

• qn(x) and q(x) agree in 1. and 2. cumulant.

• Possible assumption: Higher cumulants are small. Try an ex-

pansion in these higher cumulants !



Cumulants

• Characteristic function

qn(xn) =
∫ ∞
−∞

dk

(2π)
e−ikxnχn(k)

• Cumulants are defined by

lnχn(k) =
∑
l

(i)l
cnl
l!
kl = imnk −

1

2
Snk

2 + rn(k)

The term rn(k) =
∑
l≥3(i)lclnl! kl contains the contributions of all

higher cumulants.
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Cumulant expansion for partition function

• We have

qn(xn)

q(xn)
=

√
Snn

2π
e

(xn−mn)2

2Snn

∫ ∞
−∞

dk

(2π)
e−ikxnχn(k) =

∫ ∞
−∞

dηn

√
Snn

2π
exp

[
−
∑
n

Snnη2
n

2

]
exp

[
rn

(
ηn − i

(xn −mn)

Snn

)]

• To get

Z

ZEP
= Eq

[∏
n

(
qn(xn)

q(xn)

)]

we must take expectation over the multivariate Gaussian q(x) =

N (x;m,S).
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• Introduce complex zero mean Gaussian random vector

zn = ηn − i
xn −mn

Snn

with

〈zizj〉z = −
Sij

SiiSjj
i 6= j

〈z2
i 〉z = 0

• Then

Z

ZEP
=

〈
exp

[∑
n
rn (zn)

]〉
z



Power series expansion

for small cln (l > 2):

ln

(
Z

ZEP

)
= ln

Z

ZEP
= ln

〈
exp

[∑
n
rn (zn)

]〉
z

=
1

2

∑
m6=n

〈rmrn〉z ± . . . =
∑
m 6=n

∑
l≥3

clnclm
l!

(
Snm

SnnSmm

)l
± . . .

No “self interactions” (loops) ! This indicates that corrections may

not scale with N .
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Conjecture: EP is fairly accurate if:

• the cumulants cln are small. This holds possibly for classification

likelihoods fi(xi) = Θ(yixi), when posterior variance small com-

pared to the mean.

The marginal q(xi) might look like this

• if posterior covariances Sij small for i 6= j.
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Cumulant corrections

ln
(
Z
ZEP

)
for GP classification on USPS data

left: analytical, right: Monte Carlo
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Ising with N = 10 (J random, variance β2). Error on − lnZ (Ising, 2nd

order, l = 3,4,5) for EP (blue), EP 2nd order l = 4 corrections (blue

with triangles), loopy BP (dashed green) and Kikuchi or generalized

LBP (dash–dotted red).
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Ising with N = 10 (J random, variance β2). Error on covariance matrix

for EP (blue), EP 2nd order l = 4 corrections (blue with triangles),

loopy BP (dashed green) and Kikuchi or generalized LBP (dash–dotted

red).



Graph Coupling dcoup EP EP c EP t EP tc

Repulsive 0.25 0.0310 0.0018 0.0104 0.0010
Repulsive 0.50 0.3358 0.0639 0.1412 0.0440

Full Mixed 0.25 0.0235 0.0013 0.0129 0.0009
Mixed 0.50 0.3362 0.0655 0.1798 0.0620

Attractive 0.06 0.0236 0.0028 0.0166 0.0006
Attractive 0.12 0.8297 0.1882 0.2672 0.2094

Repulsive 1.0 1.7776 0.8461 0.0279 0.0115
Repulsive 2.0 4.3555 2.9239 0.0086 0.0077

Grid Mixed 1.0 0.3539 0.1443 0.0133 0.0039
Mixed 2.0 1.2960 0.7057 0.0566 0.0179

Attractive 1.0 1.6114 0.7916 0.0282 0.0111
Attractive 2.0 4.2861 2.9350 0.0441 0.0433

Average absolute deviation of lnZ function in a Wainwright-Jordan set-

up (N = 16), comparing EP, EP with l = 4 second order correction

(EP c), EP tree (EP t) and EP tree with l = 4 second order correction

(EP tc).
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GP in a box

p(x) =
1

Z

∏
n

I
[
|xn| < a

]
N (x ; 0, K) . (1)

0 0.2 0.4 0.6 0.8 1
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

s

x
(s

)

22



10 20 30 40 50 60 70 80 90 100
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Data set size N

lo
g
 Z

 

 

EP

EP + c
4
 correction

EP + c
4
 + c

6
 correction

MCMC



List of further EP applications

http://research.microsoft.com/en-us/um/people/minka/papers/ep/roadmap.html
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Bootstrap estimators for Gaussian process regression

models

• Goal: Estimate average case properties (test errors) of statistical

estimator

E[xi|D].

• Bootstrap: Generate pseudo data via resampling with replacement,

replace true (unknwon) distribution by emperirical distribution.

Problem: Each sample requires new running of algorithm.

• Try approximate analytical approach instead!
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Approximate Analytical Bootstrap

• Bootstrap generalization error

ε(m)
.

=
1

N

N∑
i=1

ED
[
δmi,0 (E[xi|D]− yi)2

]
ED

[
δmi,0

]
with mi random “occupation number” of datapoint i.

• Exact average with replica trick

ε(m) = lim
n→0

1

e−m/NN

N∑
i=1

ED
[
δmi,0 Z

n−2

∫
dx1dx2 p0(x(1)) p0(x(2)) P (D|x(1)) P (D|x(2)) (x(1)

i − yi) (x(2)
i − yi)

]

• Perform EP inference and let n→ 0.
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Results for Regression and SVM classification
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Generalized Models

p(x) ∝
N∏
i=1

fi(xi) exp

 N∑
i<j

xiJijxj

 m∏
k=1

F

 N∑
i=1

Ĵikxk


can be cast into the form

p(σ) ∝
∏
i ρi(σi) exp

[∑
i<j σiAijσj

]
.

with augmented set of ”random variables”

σ = (x, x̂)

and terms ρi(σi) = fi(xi)f̂i(x̂), where

f̂i(x̂) =
∫ dh

2πie
−x̂hFi(h)

The augmented coupling matrix is

A =

(
J Ĵ
ĴT 0

)
.
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Inference in continuous time stochastic dynamics

• Prior process (Ornstein–Uhlenbeck)

dxt = (Atxt + ct)dt+ B
1/2
t dWt,

• Likelihood for continuous and discrete time observations

p({ydti}i, {y
c
t}| {xt}) ∝

∏
ti∈Td

p(ydti|xti)× exp

{
−
∫ 1

0
dtV (t,yct ,xt)

}

• Time discretized version

p({ydti}i,y
c,x) = p0(x)×

∏
i

p(ydti|xti)
∏
k

exp
{
−∆tkV (tk,y

c
tk
,xtk)

}

• Does EP survive the ∆t→ 0 limit ?

28



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3
Marginal distributions at t=0.3351

 

 

sampling at 10
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variational. corr

variational Gaussian

The continuous time potential is defined as V (t, xt) = (2xt)8I[1/2,2/3](t)

and we assume two hard box discrete likelihood terms I[−0.25,0.25](xt1)

and I[−0.25,0.25](xt2) placed at t1 = 1/3 and t2 = 2/3. The prior is

defined by the parameters at = −1, ct = 4π cos(4πt) and bt = 4.



Some open problems

• Scaling up to large systems when approximations are structured,

parallelization.

• Convergence properties

• Bounds on free energies

• Performance bounds (PAC–Bayes ?)
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