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Stochastic CS Setting: Y = ®X

* Express signal X as a draw from a probabilistic model:

\

p(X)o [ | p(x)

* Appropriate p(x) for compressible signal:
/ -heavy tail -peak at origin

¢.g. Gaussian mixture model (GM)

\ p(x)=AN(0,0;)+(1-2)N(0,0;)
S 4 * Bayesian optimal Approximation Message Passing
- (BAMP)

| X=EX|Y)
‘C’f,



CS Imaging

\ * We focus on natural images in wavelet domain
* Is 1.1.d Gaussian matrix optimal for CS imaging?

No! Nature images have more properties

" ¢.g. exponential energy decay, tree structure....

* The matrix we want to design

- block diagonal
\ - tractable way to distribute samples for each block

. e  Qur solution

¢
-~ 4

sample distortion function and sample allocation



Sample Distortion Framework

Given an i.i.d. source X = [x1, X5, ..., x5 ]7, x;~p(x;)

Setup:
undersampling ratio: d2m/n,m<n
linear measurement encoder: ¢ € R™*"
nonlinear decoder: A(DX)

Then we define the I, Sample Distortion (SD) function
o1
D,(8)=inf—E || X - A(®,X)|];

0,0 n

For i.i.d random encoder-BAMP decoder , SE predicts

| g2 D, . D,
D,., =E(X?) E{F (X+Z\/;,5)}

Z ~N(0,1) and F 1s the MMSE optimal scalar denoising
estimator 5



SD Lower Bound

R . Entropy Based Bound ( EBB c.f. Shannon RD lower bound)
\ Let x ~ p(x;), var(x;) =1, h(x,)<ocothen

D, (0)=(1- 5)22(h(xi)‘hg )/(1-6)

g h(x;) -entropy of p(x;) h, - entropy of unit Gaussian
For Gaussian source D, (5)=1-6

* Model Based Bound (MBB)

N

y . p()=] [ p(c7IN(0,0?)
=0

' - bounded by the cjombination of Gaussian lower bound

7 - tighter than EBB as § — () 6



Convexity of D(0)

Theorem:
The SD function, D(0), 1s convex

Convex hull achievable by
K 1D, A, combinations of {®,A} and

D (%
( ) DlQ\\\ﬁ/ {(DzaAz}

\ \\{(DzﬂAz}
{
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Hybrid Zeroing Matrix

P

X y X
X1 5‘{]
A
= _—
X, E
d
5—(:’:’1 (1 — %)ﬂ, )
‘ X2 Xo
, 0]

O =[P

Setting a portion of the measurement matrix as zero
(convex combination of the trivial decoder and BAMP
decoder) effectively convexifies the SD function.



MSE Distortion
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p(x)=0.38N(0,1.198) +0.62N(0,0.0044)

L2 SD Fun
BAMP SD Fun

Convexity implies
achievable (by zeroing)

BAMP SD Fun
with tree info
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thus the magic matrix 1s not beneficial [Barbier,Krzakala 2011] 9



Statistical image model

\ A simple statistical multi-resolution model [Mallat 89,
Choi1 & Baraniuk 99] represent image with wavelets:

f = ZujO’k¢j09k + Z W.]ak¢]9k
k ijO 7k
/ model wavelet coefficients as 1.1.d. GM with fixed
variance per band

w0 4NO,07 )+(1-4,)N(0,03 )

\ where o, . and o ; decay exponentially across scale

This model is related to the deterministic Besov signal model.

10



Bandwise Sampling

We proposed to (randomly) sample each band independently, e.g.
[Donoho 2006, Tsaig 2007, Chang et al 2009] - makes analysis tractable.

D,

) ,

Optimizing Sample Allocation
Need to balance placing a sample in one band over another

L
. m,
\ mananiDi( “)
i o]

N,

L
‘,, S.I.Zml.zm and 0<m,<n, i=1,.. L

=1 11



Bandwise Sampling

Optimizing Sample Allocation

From the Lagrangian formulation, define a distortion reduction function
for each band:

R nj(mi):ajz.nj(D((mi—|—1)/nj)—D(ml.)/nj)

Optimal solution 1s a consequence of convex SD function and achieved by

\ a greedy sample allocation strategy.
. Similar idea to reverse water filling in Rate Distortion Theory

12



Bandwise Sampling

Convexified BAMP distortion reduction function (band 1 for
cameraman 1mage model)
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Bandwise Sample Allocation

We select a /and reverse fill samples in each band until
U(l)(mi) 37/

L

i S N —

R fun for a 10?
an image

Distortion Reduction

5

10’ 10° 10° 10* 10

Measurement Index for Band 1 to Band 6

* The optimization works for any convex SD function, including
the oracle function (MBB)

14



Incorporating Tree Structure

\ P(X[Y)oc 25 p(S) [Tiz1 pCeilsp) IT72 1 p(ril X)

-

- 4 Turbo scheme [Som, Schinter 2012]: calculate marginal probabilities for
hidden states S, and incorporate into BAMP
K, ’

15



| Bandwise CS Sample Allocation

Sample allocation (% of full sampling) per band for 6= 10%, 15.26%,

\ 25% and 30%

[ ]
SA for cvx SD fun

-

Empirical best SA
with tree info
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Bandwise CS Performance
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onstructions

from 10000

measurements
5%)

Reconstructed Images

(a) Original Cameraman (b) Uniform+BAMP (22.98 dB) (c) 2 Geng_er+BAMP (23.04 dB)
_‘,r-:w.n. = . = F - < > Vo I = e

(d) MBSA+BAMP (23.56 dB)
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General Sample Allocation

y dataset for the GSA profile

\ Average statistics for db2 wavelet coefficients of 200 images

subband by bo b3 ba b5
~ A 05108 04374 04076 0.3616 03137
‘ O‘i 3.6910 0.7506  0.1595 0.0385 0.0081
(T:é 04596  0.0490 0.0075 0.0015 0.0003
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General Sample Allocation

Reconstruction comparision for sampling ratio 0.2

[mage GSA | InforSA | MBSA | Uniform | 2 Gender || SA+TurboAMP
car 25.56 | 2411 | 2529 | 2292 22.98 25.92
plane 2828 | 27.32 | 2813 | 26.19 26.25 28.52
cagle 28.66 | 27.84 | 2859 | 263l 26.44 28.95
sculpture || 23.81 | 2289 | 2354 | 22.05 22,61 24.58
surfer 2537 | 2400 | 2513 | 22381 22.95 25.65
tourists || 24.15 | 2293 | 2375 | 22.08 2237 24.53
bullding || 24.84 | 2359 | 24.66 | 2248 22.55 25.37
castle 23.65 | 2276 | 2341 | 21.02 21.42 23.96
man 30.32 | 2933 | 3008 | 28.05 28.49 30.80
fish 27.26 | 27.57 | 2676 | 24.62 24.83 21.76
average || 26.10 | 2523 | 2593 | 2383 24.09 26.60
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Modulated Matrix Structure

/ l The modulated matrix 1s a product of the homogeneous Gaussian
matrix G and the rescaling matrix R
Jirn, o 0
0 JI Ly 0
R=| T . e, =GR
0 0 ey

Each block is a Gaussian matrix with zero mean and J; / N variance

21



1-D State Evolution Dynamics

For modulated matrix, a 1-D SE equation is derived to
track the performance based on the seeded matrix analysis
[ Krzakala 13]

/ A _ Zk Jkyki(ft /Jk)

When the SE equation converges, the distortion 1s
predicted as

A K

_ 1 T
-~ E — tSY
( LC Xk: (Jk’. )
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Two Block Matrix

0 J,1,

A1+ 1 At N r
\ 1-D SE equation 7' =;M(T ) =${715(Tt)+(1—71)125[;—ﬂ
-

.

/ A IR T
rescaling matrix R

N \ Distortion equation E =y,5(#")+(1-7 I)S(j_)
2

; Zeroing matrix 1s a special case where J, =0



% Two Block Matrix vs. Seeded Matrix

The seeded matrix with 4 sub-matrices takes the form

- %
WG G,

If we set J,=1/J, the two block matrix 1s the rescaled
seeded matrix

= BHe A

The two block matrix has a relatively simple 1-D SE
dynamics, which makes the analytical optimization
possible.

24



- First Order Phase Transition (FOPT)

A discontinuous drop of the MSE at a particular ¢ in the SD context

______ baseline

sparse signal with FOPT
compressible signal with FOPT T 1.7
compressible signal without FOPT

atitl

Necessary and sufficient condition for signals without FOPT:
foranyz” > ( )
’ ()

A df
Where ’7(7):#

T

(1+1)

and SE equation takes the form o7t ' = f (Tt) 25



Two Block Matrix Eftect on FOPT

* For signals with FOPT, the spurious fixed points of the
\ SE equation will be removed so that perfect
reconstruction 1s achievable.
* For signals without FOPT, the dynamics of the two
block matrix keep this property

Theorem:
If the SE equation for signals with the homogeneous
\ Gaussian matrix §(z) satisfies the no FOPT condition,
. then the SE equation for using the two block matrix M (7)
4 also satisfies the no FOPT condition.

, 26



Two Block Matrix for Sparse Signal
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Two Block Matrix for Compressible Signal
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e Empirically we observed that zeroing matrix is optimal for
f compressible signals without FOPT 28



Conclusion

We have introduced a SD framework to characterize a
signal’s “compressibility” in a stochastic setting.

We used SD functions to derive a natural
discretization for CS 1imaging & it gives accurate
estimation of CS performance

Modulated matrix 1s introduced as an extension of the
seeded matrix with a simple 1-D SE dynamics

First order phase transition is analyzed from the SE
function perspective and necessary and sufficient
condition for signals without FOPT 1is provided

Two-block matrix is studied as a special case.

29



Thank You
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