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Talk Outline 
• Introduction  
• Sample Distortion (SD) framework 
    -definition, lower bound and convexity 

• SD in Wavelet Statistical Image Model 
     - bandwise sampling  

      - sample allocation with tree structure 

• Modulated Matrix Design 
      - matrix structure, 1-D state evolution dynamics 

• Two Block Matrix 
      - first order phase transition, relationship with seeded matrix 

• Conclusion 
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   Stochastic CS Setting: 
• Express signal X as a draw from a probabilistic model: 

 
 
 

• Appropriate          for compressible signal:    
               -heavy tail                   -peak at origin 
 
e.g. Gaussian mixture model (GM)   
 
 

• Bayesian optimal Approximation Message Passing 
(BAMP)    
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CS Imaging 

• We focus on natural images in wavelet domain 
• Is i.i.d Gaussian matrix optimal for CS imaging?   
       No! Nature images have more properties 
         e.g.  exponential  energy  decay,  tree  structure…. 
• The matrix we want to design  
     - block diagonal   
     - tractable way to distribute samples for each block 
• Our solution 
      sample distortion function and sample allocation  
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Sample Distortion Framework 
Given an i.i.d. source      𝑋 = 𝑥 , 𝑥 , … , 𝑥 , 𝑥 ~𝑝 𝑥  
Setup: 

undersampling ratio:                                                        𝛿 ≜ 𝑚 𝑛⁄ ,𝑚 < 𝑛 
linear measurement encoder:                          𝛷 ∈ ℝ ×  
nonlinear decoder:                                                                𝛥 𝛷𝑋  
 
 
 

Then we define the l2 Sample Distortion (SD) function  
 
 
 
For i.i.d random encoder-BAMP decoder , SE predicts 
 
 
 
                  and     is the MMSE optimal scalar denoising 
estimator 
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SD Lower Bound 
• Entropy Based Bound ( EBB c.f. Shannon RD lower bound) 
     Let                                                         then  

 
 
 

     For Gaussian source  
 

• Model Based Bound (MBB) 
      
 
     - bounded by the combination of Gaussian lower bound 
     - tighter than EBB as  
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Convexity of D(δ)  

Theorem: 
The SD function, D(δ), is convex 
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Hybrid Zeroing Matrix 

[ ,0])  )

1X̂

Setting a portion of the measurement matrix as zero 
(convex combination of the trivial decoder and BAMP 
decoder) effectively convexifies the SD function.  



 SD Function  for Two-state GM 

L2 SD Fun 
BAMP SD Fun 

Convexity implies 
achievable (by zeroing) 

MBB 

EBB 

BAMP SD Fun 
with tree info 

( ) 0.38 (0,1.198) 0.62 (0,0.0044)p x N N �

Note there is no first order phase transition for the BAMP SD curve 
thus the magic matrix is not beneficial [Barbier,Krzakala 2011] 
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Statistical image model 

A simple statistical multi-resolution model [Mallat 89, 
Choi & Baraniuk 99] represent image with wavelets:  

 
 

model wavelet coefficients as i.i.d. GM with fixed 
variance per band 
 
 

where         and         decay exponentially across scale 
 
This model is related to the deterministic Besov signal model.     
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Bandwise Sampling 
We proposed to (randomly) sample each band independently, e.g. 
[Donoho  2006, Tsaig 2007, Chang et al 2009] - makes analysis tractable. 
 
 
 
 
 
Optimizing Sample Allocation 
Need to balance placing a sample in one band over another 
 
 
 
 
                                                  and                               
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Bandwise Sampling 

Optimizing Sample Allocation 
 
From the Lagrangian formulation, define a distortion reduction function 
for each band: 
 
 
 
 
Optimal solution is a consequence of convex SD function and achieved by 
a greedy sample allocation strategy. 
Similar idea to reverse water filling in Rate Distortion Theory 
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Bandwise Sampling 
Convexified BAMP distortion reduction function (band 1 for 
cameraman image model) 

distortion distortion reduction 
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Bandwise Sample Allocation 
We select a    and reverse fill samples in each band until          

J

( ) ( )i
imK Jd

J

DR fun  for 
cameraman image 

14 
The optimization works for any convex SD function, including 
the oracle function (MBB) 



Incorporating Tree Structure 

Turbo scheme [Som, Schinter 2012]:  calculate marginal probabilities for 
hidden states        and incorporate into BAMP 
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Bandwise CS Sample Allocation  
Sample  allocation  (%  of  full  sampling)  per  band  for  δ= 10%, 15.26%, 
25% and 30% 

m=6554 m=1000 

m=16384 m=19661 

SA for cvx SD fun 

Empirical best SA  
with tree info 

SA for SD fun with 
true tree info 
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Bandwise CS Performance 

e.g. cameraman 
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Reconstructed Images 

Image 
reconstructions 
from 10000 
measurements 
(15%)  
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General Sample Allocation 
Test images from the Berkeley dataset for the GSA profile 

Average statistics for db2 wavelet coefficients of 200 images  
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General Sample Allocation 
Reconstruction comparision for sampling ratio 0.2 
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Modulated Matrix Structure 
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The modulated matrix is a product of the homogeneous Gaussian 
matrix G and the rescaling matrix R  

Each block is a Gaussian matrix with zero mean and            variance  /iJ N
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1-D State Evolution Dynamics 
For modulated matrix, a 1-D SE equation is derived to 
track the performance based on the seeded matrix analysis 
[ Krzakala 13]   

When the SE equation converges, the distortion is 
predicted as  
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Two Block Matrix 
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Distortion equation 

Zeroing matrix is a special case where  2 0J  
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Two Block Matrix vs. Seeded Matrix 
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The seeded matrix with 4 sub-matrices takes the form  

If we set                the two block matrix is the rescaled 
seeded matrix 

1 21/J J 

The two block matrix has a relatively simple 1-D SE 
dynamics, which makes the analytical optimization 
possible.  
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First Order Phase Transition (FOPT) 
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A discontinuous drop of the MSE at a particular      in the SD context G

Necessary and sufficient condition for signals without FOPT:  
for any            * 0W !

Where and SE equation takes the form 
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Two Block Matrix Effect on FOPT 

• For signals with FOPT, the spurious fixed points of the 
SE equation will be removed so that perfect 
reconstruction is achievable.   

• For signals without FOPT, the dynamics of the two 
block matrix keep this property 
 
 

Theorem: 
If the SE equation for signals with the homogeneous 
Gaussian matrix          satisfies the no FOPT condition, 
then the SE equation for using the two block matrix         
also satisfies the no FOPT condition. 

� �S W
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Two Block Matrix for Sparse Signal 

The perfect reconstruction ratio is moved from 0.59 to 0.45 by the 
two block matrix with               and can be further convexified by a 
three block matrix.  

8
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Two Block Matrix for Compressible Signal 

Empirically we observed that zeroing matrix is optimal for 
compressible signals without FOPT 



Conclusion  
• We have introduced a SD framework to characterize a 

signal’s  “compressibility”  in  a  stochastic  setting. 
• We used SD functions to derive a natural 

discretization for CS imaging & it gives accurate 
estimation of CS performance 

• Modulated matrix is introduced as an extension of the 
seeded matrix with a simple 1-D SE dynamics 

• First order phase transition is analyzed from the SE 
function perspective and necessary and sufficient 
condition for signals without FOPT is provided 

• Two-block matrix is studied as a special case. 
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Thank You  
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