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Simplifications for this talk

¥ Ising variables S;j = *1

¥ At most pairwise (two body) interactions.
The most general Hamiltonian Is

H(s|J,h) = | Jij Sisj + | hi s

with corresponding measure

W

1 4 4 0
Z(J,h) exp Jij SiSj + hiSi”

ik | i

P(Sl,...,SN):




The direct problem
(main pb. In stat. mech.)

¥ Given the Hamiltonian, compute the free energy
| ! !
F(J,h)=log Z(J,h)=log exp Jij Sisj + n; s
{si} |
and average values

10" = O(s)P(s)
S
The sum Is over exponentially many terms



The inverse Ising problem

¥ Given data generated according to

which may be
¥ either M configurations of spins

¥ either magnetizations and correlations

m; = Is" Cij — !SiSj "H m; m;

¥ GOAL: estimate couplings and fields (J, h)



The OexactO solution

1 M
L(3,hls) = +-log P(s®|J,h)=
. k=1
hils;" + Jij !SiSj " |OgZ(J ,h)
i ) i
himi +  J; (Cj + mim;)+ F(J,h)
i i

Maximize the
log-likelihood

Taking the derivatives

m + !, F(J,h)=0 =1 |m;(DATA) = m;(J,h)
Cij T mim; + !Jij F(J,h)=0 = Cij (DATA) = Cij (J,h)




Input data:
Magnetizations and Correlations

¥ Less information than having configurations

If onl
¥ 4 mi = Is" Cij — !SiSj CH M;j M

are given then maximum entropy principle implies
Hamiltonian contains only single-body and two-body
Interactions

H(s|J,h) = | Jij Sisj + | hi s



Brute force solution by Monte Carlo

Monte Carlo -> unbiased solution ...but it Is slow!

Initial guess
for J(0),h(0)

Given J(t),h(t)
C compute m(t),C(t)

Update J(t+1),h(t+1)
according to
dm(t)=m(t)- m
dC(t)=C(t)- C

Return

J(t),h(t)




Mean field approximations (MFA)

IM
Log-likelihood L(J,h|s) = I\/Ii log  P(s™]J,h)=

T " k=1
= him; + Jij (Cij + mimj)! logZ(J, h)
i |
Fvea (J,h)
m"™ =1 1y Fuea (3, h)

mM™ (J,h) = m; (DATA)
Ci"™ (3,h) = Cj (DATA)




MFA to the free-energy

¥ naive mean-field (NMF) P(s)= . Pi(si)
#7 14+m 1#m Y # #
Fove = H 5 .+ H 5 -+ himy+  Jj mim;

i i £ |
'H (X)) $# xIn(x)

#
= Jij mj + hj # atanh(m;) =0

J

' FamE
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m; =tanh " h; + Jij m; 4

J




MFA to the free-energy

¥ NMF + Onsager reaction term (TAP)

Frap =

(

v,

o |
i Lolemi o 1#me

i 2 2

# # 1
+  him Ji mim; + J c(1# mi)(L# m?)

I 1E ] -
PP
# * +
m; = tanh h; Jij mj # Jjj (1# mjz)mi X
| —T—

reaction term

(



MFA to the free-energy

¥ Plefka expansion in small J

#0714+ m; 1#m Y # i
Fame = H 5 L+ H 5 L+ him; +
i i £
#% 1em' L 1#m Y
Frap = H 2m, + H 2m, +

1
+  him; + J; mim; + J c(1# md)(L# m?)

(O

(



MFA to the free-energy

¥ Bethe approximation (BA)

¥ tries to include any correlations between n.n. spins

¥ in principle no small J required
(but beware to phase transitions)

¥ factorization over links

P(s)=

i F)i(sﬁ)

J

Pi (si.sj)

Pi(si)Pj (sj)

¥ exact on trees




MFA to the free-energy

¥ Bethe approximation (BA)

o, @rm)@rm) g T m)AT m)+ g

Fpa = H + H +
BA " A A
| # $ # $%
gy Qrmp@® m)tc o @ m)A+m)" G o
4 4
I " # $ # " $% l I
' . 1+ m; 1" m; ' '
+ (17 d) H > +H > +  himi+  Jj (G + mim;)
| i £
| Fgal! Cj = 0 ftij — tanh( JIJ )
|
— 1 ) 2 n ] n o 423\2n " " "
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2tij



MFA to the free-energy

¥ Bethe approximation (BA) and cavity method

(i) D) ' L. .
oo M tj m; mgjr)nagnetlzatlon of i
1+ m tj m'" in absence of |
b (i) (i)
1+ my 7t m; >T<
_(j):f Cm. t. _(i):f |
m; (mj, mj, tj ) m; (mj, mj,tj )
L
1 " .t2 " 1 " t2 2 n 4t " t " .t
f (My, My, 1) = ( ) (Mg " mat)(m2 ™ myt)

2t(mo " mgqt)



MFA to the free-energy

¥ Bethe approximation (BA) and cavity method

oL
1 " 2 " 1 " t2 2 n 4t n t n t
f (ml, mZ,t) = t ( ) (ml moy )(m2 M1 )

2t(mo " mqt)

Q74
11 # $ 0/?
mj =tanh " h; +  atanh t; f (m;, m;,t;)

J

Small J expansion gives nMF, TAP, ...

+H w sV H W
hi + atanh tij f (mj,mi,tij) I hj + Jij m; ! Jijz (1" mjz)mi + ...

J J



Computing correlations
by linear response

¥ Correlations are trivial in MFA
Ci =0 innMF, TAP and BA (between distant spins)

¥ Non trivial correlations can be obtained by using the
linear response (Kappen Rodriguez, 1998)

I 3 11 ml I ' 1 3 11 hl
" |J T n h ( )'J T _
J m,
o'y o= g
" nMF /1] 1_m|2 J I
» 1
1 — 2 2 2
(' TAP ij - 1_ m2 + Z‘Jik (1 — mk ||J — (JU +2‘]ij m|mj)
_ | Kk




Computing correlations
by linear response in BA

¥ Analytic expression for the linear responses in BA

_ 1 ) ticFo(mi, mis tu) 0 G Ta(my, mi, tj)

( BA i 1! m?’ 1! t2 f (mg, mi,ti)2 " 1! te £ (mj, mi, tjj )2

¥ Coincide with the fixed point of
Susceptibility Propagation

¥ No need to run any algorithm!



Solving the inverse problem by MFA

¥ Match measured magnetizations and correlations with
MF approximated magnetizations and linear responses

mMFA (T, h) = m;(DATA)
Xii M(J,h) = C,;j(DATA)

¥ Under the Bethe approx. one could use either

BA

BA
Cig OF X

for n.n. correlations. Which one is better?



Zero field case Is simpler

¥ If all field are zero, then magnetizations are null by
symmetry, and expressions simplify to

naive MF (! r'“\/l”: )Iij :"ij | Jij,

TAP  (Yqe)i = 14+ Jic "i ! i,

Bethe (! ||3A:\L)|J = 1+




Exactly solvable case for the
Inverse Ising problem ?

¥ Curie-Weiss model, fully connected Jjj = ! /(N I 1)
NMF approximation

A N=10,20,40
exact correlations
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Exactly solvable case for the
Inverse Ising problem ?

¥ Curie-Weiss model, fully connected Jjj = ! /(N I 1)
more MFA (N=20)

TAP ~ BA
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Exactly solvable case for the
Inverse Ising problem ?

Bethe approximation on trees is ok

K

Bethe approximation on random graph is ok only far from
the critical point (as nMF for the Curie-Weiss model)

H

¥ How much the paramagnetic properties of a model on a
finite size random graph are different from those of
the same model defined on a tree?

¥ see recent works on finite size corrections for models
defined on random graphs (Lucibello and Morone)



Numerical results on estimating

correlations Ay L
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Matching data and MF predictions

1 C'; 5 [ X Xij
¥ Usually only off-diagonal elements are used

Jj =1 (C' N

and diagonal elements are ignored...



MFA for the Inverse Ising problem

(* owie )i = XJU c= | =1 (C Yy
(* 1ap)ii = i i
!
( 11 .m- Cl 1V.. 1| 1
| 4mimj
]
JP* = 1 atanh 2C 0, 1+4(1! m?)(1! m?)(C' HZ ! mim; !
L # $2

2(C* i

1+4(1! mi)(L! mi)(C' D ! 2mim; (C! 1)

I 4(C! 1)5

+




More MFA for the
Inverse Ising problem

¥ Independent pair (IP) approximation

1 PH P Y0
1+ m)(1+mj)+ C (A! mj)d! mj)+ G

)" - 1 #( i)( i)t G $#( i)( i) P
4 1+ m)@! m)! C (@! m)@+ m)! G

¥ Sessak-Monasson (SM) small correlation expansion

Cij

SM _ 1y P
T E TN G my ()2




Numerical results for the inverse
Ising problem
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Improving correlations by a

normalization trick

¥ In ferromagnetic models with loops,
linear response correlations in BA are
too strong because of loops, which are
OunexpectedO in SuscProp

¥ Leadingto ! > 1 whichis unphysical

¥ Trick: enforce ! i = lby a normalization




Make MFA & LR consistent

OConsistency is more important than truthO (S. Ting)

Add Lagrange multipliers to your referred MF free-energy

Fvea ({mi}, {Gj }, .. 0)

to enforce consistency with linear response estimates

. =11 m2 !ij _C”

N

free energy
minimum
location




General framework (MFA + LR)

Fi = Fuea ({Mi}.{Cj }...)+ | m? + i Cij
A i A i<j 4
Your preferred MFA can be set to zero to

recover known approx.

or used to satisfy
i =1! me 1y = Cj




NN correlations

Nearest-neighbor correlation
(2D square lattice)
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Off-diagonal constraint only

NMF/TAP ("=0) —+—
Bethe (" =0) —e—
Bethe (" =0) [KR] —&—
Bethe ----©--
Plaquette ----E&--

0.01 |

.=
-
.
|«

0.15 0.2 025 0.3 035 04 045 05 0.55

Bethe + off-diagonal constraints = SM



Random field Ising model
2D square lattice
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Random field Ising model
2D square lattice
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|Cinfer - Cexactl

Random field Ising model

2D square lattice
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|Cinfer - Cexactl
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Input data: Configurations

¥ More information than knowing only
m; = Is" G = 1Isi5"# mim;

¥ In principle one can access to all higher order
correlations (but these are much more noisy)

¥ Many different inference algorithms. Among these:
¥ Adaptive cluster expansion

¥ cluster configurations & apply MFA within any state



Pseudo-likelihood method (PLM)

¥ For each variable define a conditional probability

explsi(hi + . Ji S;
Pi(sls) = ooty Sl
2coshfi + Jj 5))
¥ Maximize the local log-likelihood ~ L; = !logPi(si]s\;)" =

him; + | Jij (Cij + m;m; ) #!1log 2coshf; + | Jij Si )"
J J
to estimate hand J;

¥ Note that for each coupling JPLM returns 2 estimates

¥ Better maximizing PL(h,J)= L



10 |

0.1

0.01

PLM vs. MFA

2D ferromagnet N=7%=49
diluted (p=0.7)

M=5000 samples

1P
- TAP
: SM
. BA
" PLM
BA norm

0.2 0.4

0.6

0.8




Inferring topology In sparse models

¥ For simplicity letOs assume

¥ |J5 ]! {0}
¥ non-zero couplings are sparse

¥ Maximize L1-regularized pseudo-likelihood

PL (h,d)=  Li! ! ]3|
i |

¥ L1-regularization gives a bias to the estimates!



Couplings inferred by PLM
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Decimation procedure

No L1-regularizer -> no bias
Maximize PL(h,J)

Set to zero a constant fraction of couplings
(those inferred to be the smallest)

Maximize again P L (h,J only on couplings still not set
to zero (this is impossible within a MFA)

lterate until maximum of P L (h, 3tarts decreasing
OsensiblyO



PLM + decimation
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True Positive Rate

PLM + decimation
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Some conclusions

¥ Mean field approximations
¥ Inverse problem harder than direct problem
¥ Requires (at least) improvement in the direct problem
¥ Fundamental problem of going beyond Bethe and trees...
¥ Pseudo-likelihood method
¥ Better performances in general

¥ Specially well suited for inferring topology in sparse
models via L1-regularization, thresholding or decimation



