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Simplifications for this talk

• Ising variables

• At most pairwise (two body) interactions.
The most general Hamiltonian is

with corresponding measure

si = ±1

H(s|J ,h) =
X

Jijsisj +
X

i

hisi

3

I. THE MODEL AND THE MEAN-FIELD APPROXIMATIONS

In order to keep the presentation simple, I prefer to deal only with binary variables (Ising

spins) si = ±1 and Hamiltonian containing up to two-body interactions, i.e. external fields and

pairwise couplings. Thus, the most general model I want to study is defined by the following joint

probability distribution over N Ising variables

P (s1, . . . , sN ) =
1

Z(J ,h)
exp

⌥

 
↵

i �=j

Jijsisj +
↵

i

hisi

�

⌦ , (1)

where the partition function Z(J ,h) is a normalizing constant, that depends on all the couplings

J = {Ji,j} and the external fields h = {hi}. Please notice that the temperature parameter has

been absorbed in the definition of external fields and couplings. All the required information about

the model is encoded in the free-energy

F (J ,h) = lnZ(J ,h) . (2)

In the rest of this Section I summarize the most common MFA to the free-energy: I am particularly

interested in deriving the self-consistency equations for the magnetizations that are used in Section

II for obtaining 2-point correlations.

The simplest MFA, also known as naive MF (nMF), approximates the model in terms of local

magnetizations mi = ⌥si�, where the angular brackets represent the average w.r.t. the measure in

Eq.(1). The corresponding approximation to the free-energy is

FnMF =
↵

i

⇧
H

⇤
1 +mi

2

⌅
+H

⇤
1�mi

2

⌅⌃
+
↵

i

himi +
↵

i �=j

Jijmimj , (3)

where H(x) ⇤ �x ln(x) and the mi must be fixed according to the self-consistency equations

⇤FnMF

⇤mi
=
↵

j

Jijmj + hi � atanh(mi) = 0 ⌅ mi = tanh

⌥

 hi +
↵

j

Jijmj

�

⌦ . (4)

A better MFA can be obtained by considering also the Onsager reaction term [26], leading to

the following TAP approximated free-energy and self-consistency equations

FTAP =
↵

i

⇧
H

⇤
1 +mi

2

⌅
+H

⇤
1�mi

2

⌅⌃
+

+
↵

i

himi +
↵

i �=j

⇤
Jijmimj +

1

2
J2
ij(1�m2

i )(1�m2
j )

⌅
, (5)

mi = tanh

⌥

 hi +
↵

j

Jij
�
mj � Jij(1�m2

j )mi

⇥
�

⌦ . (6)



The direct problem
(main pb. in stat. mech.)

• Given the Hamiltonian, compute the free energy

and average values

The sum is over exponentially many terms

F (J ,h) = logZ(J ,h) = log

X

{si}

exp

 
X

Jijsisj +
X

i

hisi

!

hOi =
X

s

O(s)P (s)



The inverse Ising problem

• Given data generated according to

which may be 

• either M configurations of spins

• either magnetizations and correlations

• GOAL: estimate couplings and fields 

mi = hsii Cij = hsisji �mimj
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The “exact” solution

Maximize the
log-likelihood

L(J ,h|s) = 1

M
log

MY

k=1

P (s(k)|J ,h) =

=

X

i

hihsii+
X

ij

Jijhsisji � logZ(J ,h)

=

X

i

himi +

X

ij

Jij(Cij +mimj) + F (J ,h)

Taking the derivatives

mi + @hiF (J ,h) = 0 =) mi(DATA) = mi(J ,h)

Cij +mimj + @JijF (J ,h) = 0 =) Cij(DATA) = Cij(J ,h)



Input data:
Magnetizations and Correlations

• Less information than having configurations

• If only 

are given then maximum entropy principle implies 
Hamiltonian contains only single-body and two-body 
interactions

mi = hsii Cij = hsisji �mimj

H(s|J ,h) =
X

Jijsisj +
X

i

hisi



Brute force solution by Monte Carlo

Initial guess
for J(0),h(0)

Monte Carlo -> unbiased solution ...but it is slow!

Given J(t),h(t)
MC compute m(t),C(t)

Update J(t+1),h(t+1)
according to
dm(t)=m(t)-m
dC(t)=C(t)-C

dm<eps?
dC<eps?

Yes

No
Return

J(t),h(t)



Mean field approximations (MFA)

Log-likelihood L(J ,h|s) = 1

M
log

MY

k=1

P (s(k)|J ,h) =

=

X

i

himi +

X

ij

Jij(Cij +mimj)� logZ(J ,h)

FMFA(J ,h)

mMFA
i = �@hiFMFA(J ,h)

mMFA
i (J ,h) = mi(DATA)

CMFA
ij (J ,h) = Cij(DATA)



• naive mean-field (nMF)

3

I. THE MODEL AND THE MEAN-FIELD APPROXIMATIONS

In order to keep the presentation simple, I prefer to deal only with binary variables (Ising

spins) si = ±1 and Hamiltonian containing up to two-body interactions, i.e. external fields and

pairwise couplings. Thus, the most general model I want to study is defined by the following joint

probability distribution over N Ising variables

P (s1, . . . , sN ) =
1

Z(J ,h)
exp

⌥

 
↵

i �=j

Jijsisj +
↵

i

hisi

�

⌦ , (1)

where the partition function Z(J ,h) is a normalizing constant, that depends on all the couplings

J = {Ji,j} and the external fields h = {hi}. Please notice that the temperature parameter has

been absorbed in the definition of external fields and couplings. All the required information about

the model is encoded in the free-energy

F (J ,h) = lnZ(J ,h) . (2)

In the rest of this Section I summarize the most common MFA to the free-energy: I am particularly

interested in deriving the self-consistency equations for the magnetizations that are used in Section

II for obtaining 2-point correlations.

The simplest MFA, also known as naive MF (nMF), approximates the model in terms of local

magnetizations mi = ⌥si�, where the angular brackets represent the average w.r.t. the measure in

Eq.(1). The corresponding approximation to the free-energy is

FnMF =
↵

i

⇧
H

⇤
1 +mi

2

⌅
+H

⇤
1�mi

2

⌅⌃
+
↵

i

himi +
↵

i �=j

Jijmimj , (3)

where H(x) ⇤ �x ln(x) and the mi must be fixed according to the self-consistency equations

⇤FnMF

⇤mi
=
↵

j

Jijmj + hi � atanh(mi) = 0 ⌅ mi = tanh

⌥

 hi +
↵

j

Jijmj

�

⌦ . (4)

A better MFA can be obtained by considering also the Onsager reaction term [26], leading to

the following TAP approximated free-energy and self-consistency equations

FTAP =
↵

i

⇧
H

⇤
1 +mi

2

⌅
+H

⇤
1�mi

2

⌅⌃
+

+
↵

i

himi +
↵

i �=j

⇤
Jijmimj +

1

2
J2
ij(1�m2

i )(1�m2
j )

⌅
, (5)

mi = tanh

⌥

 hi +
↵

j

Jij
�
mj � Jij(1�m2

j )mi

⇥
�

⌦ . (6)

3

I. THE MODEL AND THE MEAN-FIELD APPROXIMATIONS

In order to keep the presentation simple, I prefer to deal only with binary variables (Ising

spins) si = ±1 and Hamiltonian containing up to two-body interactions, i.e. external fields and

pairwise couplings. Thus, the most general model I want to study is defined by the following joint

probability distribution over N Ising variables

P (s1, . . . , sN ) =
1

Z(J ,h)
exp

⌥

 
↵

i �=j

Jijsisj +
↵

i

hisi

�

⌦ , (1)

where the partition function Z(J ,h) is a normalizing constant, that depends on all the couplings

J = {Ji,j} and the external fields h = {hi}. Please notice that the temperature parameter has

been absorbed in the definition of external fields and couplings. All the required information about

the model is encoded in the free-energy

F (J ,h) = lnZ(J ,h) . (2)

In the rest of this Section I summarize the most common MFA to the free-energy: I am particularly

interested in deriving the self-consistency equations for the magnetizations that are used in Section

II for obtaining 2-point correlations.

The simplest MFA, also known as naive MF (nMF), approximates the model in terms of local

magnetizations mi = ⌥si�, where the angular brackets represent the average w.r.t. the measure in

Eq.(1). The corresponding approximation to the free-energy is

FnMF =
↵

i

⇧
H

⇤
1 +mi

2

⌅
+H

⇤
1�mi

2

⌅⌃
+
↵

i

himi +
↵

i �=j

Jijmimj , (3)

where H(x) ⇤ �x ln(x) and the mi must be fixed according to the self-consistency equations

⇤FnMF

⇤mi
=
↵

j

Jijmj + hi � atanh(mi) = 0 ⌅ mi = tanh

⌥

 hi +
↵

j

Jijmj

�

⌦ . (4)

A better MFA can be obtained by considering also the Onsager reaction term [26], leading to

the following TAP approximated free-energy and self-consistency equations

FTAP =
↵

i

⇧
H

⇤
1 +mi

2

⌅
+H

⇤
1�mi

2

⌅⌃
+

+
↵

i

himi +
↵

i �=j

⇤
Jijmimj +

1

2
J2
ij(1�m2

i )(1�m2
j )

⌅
, (5)

mi = tanh

⌥

 hi +
↵

j

Jij
�
mj � Jij(1�m2

j )mi

⇥
�

⌦ . (6)

3

I. THE MODEL AND THE MEAN-FIELD APPROXIMATIONS

In order to keep the presentation simple, I prefer to deal only with binary variables (Ising

spins) si = ±1 and Hamiltonian containing up to two-body interactions, i.e. external fields and

pairwise couplings. Thus, the most general model I want to study is defined by the following joint

probability distribution over N Ising variables

P (s1, . . . , sN ) =
1

Z(J ,h)
exp

⌥

 
↵

i �=j

Jijsisj +
↵

i

hisi

�

⌦ , (1)

where the partition function Z(J ,h) is a normalizing constant, that depends on all the couplings

J = {Ji,j} and the external fields h = {hi}. Please notice that the temperature parameter has

been absorbed in the definition of external fields and couplings. All the required information about

the model is encoded in the free-energy

F (J ,h) = lnZ(J ,h) . (2)

In the rest of this Section I summarize the most common MFA to the free-energy: I am particularly

interested in deriving the self-consistency equations for the magnetizations that are used in Section

II for obtaining 2-point correlations.

The simplest MFA, also known as naive MF (nMF), approximates the model in terms of local

magnetizations mi = ⌥si�, where the angular brackets represent the average w.r.t. the measure in

Eq.(1). The corresponding approximation to the free-energy is

FnMF =
↵

i

⇧
H

⇤
1 +mi

2

⌅
+H

⇤
1�mi

2

⌅⌃
+
↵

i

himi +
↵

i �=j

Jijmimj , (3)

where H(x) ⇤ �x ln(x) and the mi must be fixed according to the self-consistency equations

⇤FnMF

⇤mi
=
↵

j

Jijmj + hi � atanh(mi) = 0 ⌅ mi = tanh

⌥

 hi +
↵

j

Jijmj

�

⌦ . (4)

A better MFA can be obtained by considering also the Onsager reaction term [26], leading to

the following TAP approximated free-energy and self-consistency equations

FTAP =
↵

i

⇧
H

⇤
1 +mi

2

⌅
+H

⇤
1�mi

2

⌅⌃
+

+
↵

i

himi +
↵

i �=j

⇤
Jijmimj +

1

2
J2
ij(1�m2

i )(1�m2
j )

⌅
, (5)

mi = tanh

⌥

 hi +
↵

j

Jij
�
mj � Jij(1�m2

j )mi

⇥
�

⌦ . (6)

3

I. THE MODEL AND THE MEAN-FIELD APPROXIMATIONS

In order to keep the presentation simple, I prefer to deal only with binary variables (Ising

spins) si = ±1 and Hamiltonian containing up to two-body interactions, i.e. external fields and

pairwise couplings. Thus, the most general model I want to study is defined by the following joint

probability distribution over N Ising variables

P (s1, . . . , sN ) =
1

Z(J ,h)
exp

⌥

 
↵

i �=j

Jijsisj +
↵

i

hisi

�

⌦ , (1)

where the partition function Z(J ,h) is a normalizing constant, that depends on all the couplings

J = {Ji,j} and the external fields h = {hi}. Please notice that the temperature parameter has

been absorbed in the definition of external fields and couplings. All the required information about

the model is encoded in the free-energy

F (J ,h) = lnZ(J ,h) . (2)

In the rest of this Section I summarize the most common MFA to the free-energy: I am particularly

interested in deriving the self-consistency equations for the magnetizations that are used in Section

II for obtaining 2-point correlations.

The simplest MFA, also known as naive MF (nMF), approximates the model in terms of local

magnetizations mi = ⌥si�, where the angular brackets represent the average w.r.t. the measure in

Eq.(1). The corresponding approximation to the free-energy is

FnMF =
↵

i

⇧
H

⇤
1 +mi

2

⌅
+H

⇤
1�mi

2

⌅⌃
+
↵

i

himi +
↵

i �=j

Jijmimj , (3)

where H(x) ⇤ �x ln(x) and the mi must be fixed according to the self-consistency equations

⇤FnMF

⇤mi
=
↵

j

Jijmj + hi � atanh(mi) = 0 ⌅ mi = tanh

⌥

 hi +
↵

j

Jijmj

�

⌦ . (4)

A better MFA can be obtained by considering also the Onsager reaction term [26], leading to

the following TAP approximated free-energy and self-consistency equations

FTAP =
↵

i

⇧
H

⇤
1 +mi

2

⌅
+H

⇤
1�mi

2

⌅⌃
+

+
↵

i

himi +
↵

i �=j

⇤
Jijmimj +

1

2
J2
ij(1�m2

i )(1�m2
j )

⌅
, (5)

mi = tanh

⌥

 hi +
↵

j

Jij
�
mj � Jij(1�m2

j )mi

⇥
�

⌦ . (6)

MFA to the free-energy

P (s) =
Q

i Pi(si)



MFA to the free-energy

• nMF + Onsager reaction term (TAP)
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I. THE MODEL AND THE MEAN-FIELD APPROXIMATIONS

In order to keep the presentation simple, I prefer to deal only with binary variables (Ising

spins) si = ±1 and Hamiltonian containing up to two-body interactions, i.e. external fields and

pairwise couplings. Thus, the most general model I want to study is defined by the following joint

probability distribution over N Ising variables
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where the partition function Z(J ,h) is a normalizing constant, that depends on all the couplings

J = {Ji,j} and the external fields h = {hi}. Please notice that the temperature parameter has

been absorbed in the definition of external fields and couplings. All the required information about

the model is encoded in the free-energy

F (J ,h) = lnZ(J ,h) . (2)
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• Bethe approximation (BA)

• tries to include any correlations between n.n. spins

• in principle no small J required
(but beware to phase transitions)

• factorization over links

• exact on trees

MFA to the free-energy

P (s) =
Q

i Pi(si)
Q

ij
Pij(si,sj)

Pi(si)Pj(sj)



MFA to the free-energy

• Bethe approximation (BA)
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In the TAP approximation, when computing the marginal probability of spin si (i.e. its mag-

netization mi), the reaction term modifies the marginal probabilities of the neighboring spins,

mj ⇥ (mj � Ji,j(1 � m2
j )mi), in order to try to remove the e�ect of the spin si under study. It

has been recognized [13, 14] that FnMF and FTAP are only the first two terms of the expansion

of F (J ,h) in small couplings J at fixed magnetizations m = {mi}. This expansion contains [14]

both loop terms, like JijJj⇧J⇧i, and terms with higher powers of a single coupling, i.e. Jk
ij : the

latter terms, that correspond to considering recursively the reaction to the reaction between spins

si and sj , can be resummed and lead to the BA.

The BA gives a description of the model in terms of magnetizations mi and connected correla-

tions cij = ⌃sisj⌥ �mimj between neighboring spins (i.e. spins connected by a non-zero coupling

Jij). The BA can be derived in two equivalent ways. The first way consists in finding values of m

and c minimizing the following free-energy

FBA =
↵
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⇧
H

⇤
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Jij(cij +mimj) , (7)

where di is the degree of spin si, i.e. the number of its neighboring spins. In Eq.(7) the last two

terms correspond to the average value of the energy at given magnetizations and neighbouring

correlations, while the first two terms correspond to the entropy of the Bethe approximation to the

joint probability distribution of the N spin variables,

P (s1, . . . , sN )
BA⇤
�

(ij)

pij(si, sj)

pi(si)pj(sj)

�

i

pi(si) , (8)

where the first product runs over all pair of neighboring spins and the two-spins and single-spin

marginal probabilities are given respectively by pij(si, sj) = [(1 +misi)(1 +mjsj) + cijsisj ]/4 and

pi(si) = (1 +misi)/2. The conditions ⌅FBA/⌅cij = 0 can be solved analytically and lead to

Jij =
1

4
ln

⌥
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�
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⌦ , (9)

cij(mi,mj , tij) =
1

2tij

�
1 + t2ij �

�
(1� t2ij)

2 � 4tij(mi � tijmj)(mj � tijmi)
⇥
�mimj . (10)

where tij = tanh(Jij). Please note that Eq.(9) is identical to Eq.(26) in Ref. 16 and this is a

further confirmation that resumming all 2-spin terms in the Plefka expansion leads to the BA.
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MFA to the free-energy

• Bethe approximation (BA) and cavity method

                                               : magnetization of i
                                                 in absence of j

5

Moreover Eq.(9) has been used in the literature [7, 27] as the independent-pair (IP) approximation

for inferring couplings from magnetizations and correlations: such an approximation infers the

coupling Jij by assuming spins si and sj form an isolated pair with magnetizations mi and mj and

correlation cij . Unfortunately under this IP approximation computing the external fields in not

immediate and moreover even the estimates of the couplings are rather poor (see Section V).

By making the substitution cij ⇥ cij(mi,mj , tij) in FBA one can obtain the Bethe free-energy

only in terms of magnetizations, from which the self-consistency equations for the magnetizations

can be derived. However this derivation requires a rather complicated algebra and I prefer to

obtain the same equations in a much simpler alternative way.

In the so-called Cavity Method [2] local magnetizations mi and neighbouring correlations cij

are expressed in terms of some auxiliary variables, the cavity magnetizations m(j)
i (i.e. the mean

value of si in the absence of a neighboring spin sj):

mi =
m(j)

i + tij m
(i)
j

1 +m(j)
i tij m

(i)
j

, (11)

mj =
tij m

(j)
i +m(i)

j

1 +m(j)
i tij m

(i)
j

, (12)

cij =
tij +m(j)

i m(i)
j

1 +m(j)
i tij m

(i)
j

�mimj . (13)

Cavity magnetizations must satisfy the self-consistency equations

m(j)
i = tanh

�

⇤hi +
⇧

k( �=j)

atanh(tik m
(i)
k )

⇥

⌅ . (14)

These equations are often solved by an iterative algorithm known as Belief Propagation (BP) [28]:

in case of convergence, the fixed point of BP gives directly the Bethe free-energy that admits an

expression in terms of cavity magnetizations only [2].

In order to obtain a closed set of self-consistency equations in the magnetizations m, let me

solve eqs.(11-12) for the cavity magnetizations and find

m(j)
i = f(mi,mj , tij) m(i)

j = f(mj ,mi, tij) , (15)

where

f(m1,m2, t) =
1� t2 �

⌃
(1� t2)2 � 4t(m1 �m2t)(m2 �m1t)

2t(m2 �m1t)
. (16)

The sign in front of the square root has been chosen such that f(0, 0, t) = 0 as it should. A

consistency check can be made by substituting expressions (15) in Eq.(13) to obtain again the result

i j
tij
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only in terms of magnetizations, from which the self-consistency equations for the magnetizations

can be derived. However this derivation requires a rather complicated algebra and I prefer to

obtain the same equations in a much simpler alternative way.

In the so-called Cavity Method [2] local magnetizations mi and neighbouring correlations cij

are expressed in terms of some auxiliary variables, the cavity magnetizations m(j)
i (i.e. the mean

value of si in the absence of a neighboring spin sj):

mi =
m(j)

i + tij m
(i)
j

1 +m(j)
i tij m

(i)
j

, (11)

mj =
tij m

(j)
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cij =
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�mimj . (13)

Cavity magnetizations must satisfy the self-consistency equations

m(j)
i = tanh

�

⇤hi +
⇧

k( �=j)

atanh(tik m
(i)
k )

⇥

⌅ . (14)

These equations are often solved by an iterative algorithm known as Belief Propagation (BP) [28]:

in case of convergence, the fixed point of BP gives directly the Bethe free-energy that admits an

expression in terms of cavity magnetizations only [2].

In order to obtain a closed set of self-consistency equations in the magnetizations m, let me

solve eqs.(11-12) for the cavity magnetizations and find

m(j)
i = f(mi,mj , tij) m(i)

j = f(mj ,mi, tij) , (15)

where

f(m1,m2, t) =
1� t2 �

⌃
(1� t2)2 � 4t(m1 �m2t)(m2 �m1t)

2t(m2 �m1t)
. (16)

The sign in front of the square root has been chosen such that f(0, 0, t) = 0 as it should. A

consistency check can be made by substituting expressions (15) in Eq.(13) to obtain again the result

m(j)
i
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in Eq.(10). Finally, combining Eq.(11) and Eq.(14), it is possible to obtain the self consistency

equation for the magnetizations under the BA:

mi = tanh

⇤

⇧hi +
⌥

j

atanh
�
tijf(mj ,mi, tij)

⇥
⌅

⌃ . (17)

It is fair to comment that the use of this formula for finding Bethe magnetizations is not a good

idea: indeed an iterative solution of Eq.(17) is typically more unstable than BP solving Eq.(14).

My interest in this formula is that it involves only physical magnetizations (not cavity ones) and

can be used to obtain correlations (see Section II) and to solve in a fast way the inverse Ising

problem (see Section V).

A series expansion of the exponent in Eq.(17) for small couplings gives

hi +
⌥

j

atanh
�
tijf(mj ,mi, tij)

⇥
⇤ hi +

⌥

j

�
Jijmj � J2

ij(1�m2
j )mi + . . .

⇥
, (18)

and one recognizes that the first two terms of the expansion are the naive MF approximation and

the Onsager reaction term. This expansion should make clearer that the BA is a way of considering

recursively all the reactions between a pair of neighboring variables.

II. COMPUTING CORRELATIONS BY LINEAR RESPONSE

A preliminary step to solve the inverse Ising problem by any MFA is to derive an analytical

expression for the pairwise correlations as a function of the coupling constants. Actually, the MFA

discussed in Section I do not provide information about the correlation between distant variables:

indeed, naive MF and TAP approximations give cij = 0 for any pair of variables, and the BA only

provides an expression for correlation between neighboring spins, see Eq.(10), which is trivially

cij = tij in case of null magnetizations.

Nonetheless, a closed set of equations for the connected correlations1, Cij ⇥ ⌅sisj⇧� ⌅si⇧⌅sj⇧ for

any pair i, j, can be derived from the magnetizations self-consistency equations, Eqs.(4), (6), (17),

through the linear response [8, 12]

Cij =
⇤mi

⇤hj
, (C�1)ij =

⇤hi
⇤mj

. (19)

1 Please do not confuse the correlation Cij with the parameter cij appearing in the BA: the two coincide only when
the BA is exact.
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Small J expansion gives nMF, TAP, ...



Computing correlations
by linear response

• Correlations are trivial in MFA
             in nMF, TAP and BA (between distant spins)

• Non trivial correlations can be obtained by using the 
linear response (Kappen Rodriguez, 1998)

Cij = 0

�ij =
@mi

@hj
(��1)ij =

@hi

@mj
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The inverse correlation matrices C�1 for the three MFA discussed above are given by the following

expressions:

naive MF (C�1
nMF)ij =

�ij
1�m2

i

� Jij , (20)

TAP (C�1
TAP)ij =

⇤
1

1�m2
i

+
⇧

k

J2
ik(1�m2

k)

⌅
�ij �

�
Jij + 2J2

ijmimj
⇥
, (21)

Bethe (C�1
BA)ij =

⇤
1

1�m2
i

�
⇧

k

tikf2(mk,mi, tik)

1� t2ikf(mk,mi, tik)2

⌅
�ij �

tijf1(mj ,mi, tij)

1� t2ijf(mj ,mi, tij)2
, (22)

where f1(m1,m2, t) ⇥ ⌅f(m1,m2, t)/⌅m1 and f2(m1,m2, t) ⇥ ⌅f(m1,m2, t)/⌅m2. From these

expressions one can obtain directly any correlation by simply computing the inverse of a matrix.

Please note that Eq.(22) gives exactly the same solution found by the SuscProp iterative al-

gorithm [9], which is presently considered one among the best inference algorithms. The main

advantage of Eq.(22) is that it always provides the correlation matrix, even in those cases where

SuscProp does not converge to the fixed point. Moreover inverting a matrix takes roughly the same

time of a single iteration of SuscProp, and so using Eq.(22) is much faster than running SuscProp,

even when the latter converges.

Nevertheless, it is fair to notice that the use of Eq.(22) does not solve all the problems related to

the lack of convergence of SuscProp. Indeed, during the many tests I have run, I noticed that often

the lack of convergence of SuscProp does correspond to the BA fixed point becoming unphysical:

in these cases, by inverting the correlation matrix provided by Eq.(22), one gets an unphysical

correlation matrix (e.g. a correlation matrix with negative diagonal elements!). In this sense the

lack of convergence of SuscProp gives a warning that the “blind” use of Eq.(22) does not provide.

So, a general suggestion when using the above formulas, providing an analytical expression for the

correlation matrices under a MFA, is to check explicitly the physical consistency of the outcome.

One may comment that Eq.(22) contains the magnetizations and the iterative computation of

these (i.e. the BP algorithm) su�ers the same convergence problems of SuscProp: this is easy to

prove, given that the homogeneous SuscProp equations are nothing but the iterative equations for

evolving under BP a small perturbation in the magnetization, and so BP is unstable if SuscProp

does not converge. However there are provably convergent algorithms for the computation of

magnetizations under the BA [29, 30]: the use of these algorithms in conjunction with Eq.(22)

allows a direct computation of correlations under the BA. Moreover there are situations where

magnetizations are known a priori and Eq.(22) can be applied directly: e.g. when symmetries in

the probability measure force magnetizations to be zero, or in the inverse Ising problem, where

(��1
nMF)ij

(��1
TAP)ij



Computing correlations
by linear response in BA

• Analytic expression for the linear responses in BA

• Coincide with the fixed point of
Susceptibility Propagation

• No need to run any algorithm!

7

The inverse correlation matrices C�1 for the three MFA discussed above are given by the following

expressions:

naive MF (C�1
nMF)ij =

�ij
1�m2

i

� Jij , (20)

TAP (C�1
TAP)ij =

⇤
1

1�m2
i

+
⇧

k

J2
ik(1�m2

k)

⌅
�ij �

�
Jij + 2J2

ijmimj
⇥
, (21)

Bethe (C�1
BA)ij =

⇤
1

1�m2
i

�
⇧

k

tikf2(mk,mi, tik)

1� t2ikf(mk,mi, tik)2

⌅
�ij �

tijf1(mj ,mi, tij)

1� t2ijf(mj ,mi, tij)2
, (22)

where f1(m1,m2, t) ⇥ ⌅f(m1,m2, t)/⌅m1 and f2(m1,m2, t) ⇥ ⌅f(m1,m2, t)/⌅m2. From these

expressions one can obtain directly any correlation by simply computing the inverse of a matrix.
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advantage of Eq.(22) is that it always provides the correlation matrix, even in those cases where

SuscProp does not converge to the fixed point. Moreover inverting a matrix takes roughly the same

time of a single iteration of SuscProp, and so using Eq.(22) is much faster than running SuscProp,

even when the latter converges.
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these (i.e. the BP algorithm) su�ers the same convergence problems of SuscProp: this is easy to

prove, given that the homogeneous SuscProp equations are nothing but the iterative equations for

evolving under BP a small perturbation in the magnetization, and so BP is unstable if SuscProp

does not converge. However there are provably convergent algorithms for the computation of
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(��1
BA)ij



Solving the inverse problem by MFA

• Match measured magnetizations and correlations with 
MF approximated magnetizations and linear responses

• Under the Bethe approx. one could use either 

                                or

for n.n. correlations. Which one is better?

mMFA
i (J ,h) = mi(DATA)

�MFA
ij (J ,h) = Cij(DATA)

cBA
ij �BA

ij



Zero field case is simpler

• If all field are zero, then magnetizations are null by 
symmetry, and expressions simplify to
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The Bethe approximation for solving the inverse Ising problem

correlation matrices under a MFA, is to check explicitly the physical consistency of the
outcome.

One may comment that equation (22) contains the magnetizations, and the iterative
computation of these (i.e. the BP algorithm) su⇥ers the same convergence problems as
SuscProp: this is easy to prove, given that the homogeneous SuscProp equations are
nothing but the iterative equations for evolving under BP a small perturbation in the
magnetization, and so BP is unstable if SuscProp does not converge. However there
are provably convergent algorithms for the computation of magnetizations under the
BA [29, 30]: the use of these algorithms in conjunction with equation (22) allows a
direct computation of correlations under the BA. Moreover there are situations where
magnetizations are known a priori and equation (22) can be applied directly: e.g. when
symmetries in the probability measure force magnetizations to be zero, or in the inverse
Ising problem, where magnetizations are given as an input to the problem. In the rest of
the paper I deal mainly with these two cases.

2.1. Estimating correlations in the case of null magnetizations

A preliminary ranking of MFA can be done on the basis of how good their estimates of
correlations are, given the couplings. Indeed I expect that the better this estimate is, the
better the solution to the inverse problem will be.

For simplicity I concentrate on models with no external fields and the couplings are
multiplied by a parameter � (the inverse temperature) such that the di⇤culty of the
inference problem increases with �.

In the case of null magnetizations, the expressions for the inverse correlation matrices
simplify a lot:

naive MF (C�1
nMF)ij = ⇥ij � Jij, (23)

TAP (C�1
TAP)ij =

"

1 +
X

k

J2
ik

#

⇥ij � Jij, (24)

Bethe (C�1
BA)ij =

"

1 +
X

k

t2ik
1 � t2ik

#

⇥ij � tij
1 � t2ij

, (25)

since f1(0, 0, t) = 1/(1 � t2) and f2(0, 0, t) = �t/(1 � t2).
Given that for mi = 0, the expressions for the correlation matrices are much simpler,

I report also those that can be obtained from the Plefka expansion at the third and fourth
order:

Third order (C�1
3 )ij =

2

41 +
X

k

J2
ik + 2

X

k,�

JikJk�J�i

3

5 ⇥ij �
�
Jij + 2

3J
3
ij

�
, (26)

Fourth order (C�1
4 )ij =

2

41+
X

k

J2
ik+2

X

k,�

JikJk�J�i + 1
3

X

k

J4
ik+2

X

k,�,m

JikJk�J�mJmi

3

5 ⇥ij

�
 

Jij + 2
3J

3
ij + 2J2

ij

X

k

JikJkj

!

. (27)
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Exactly solvable case for the 
inverse Ising problem ?

• Curie-Weiss model, fully connected
nMF approximation

Jij = �/(N � 1)
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Exactly solvable case for the 
inverse Ising problem ?

• Curie-Weiss model, fully connected
more MFA (N=20)

Jij = �/(N � 1)
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Exactly solvable case for the 
inverse Ising problem ?

• Bethe approximation on trees is ok

• Bethe approximation on random graph is ok only far from 
the critical point (as nMF for the Curie-Weiss model)

• How much the paramagnetic properties of a model on a 
finite size random graph are different from those of 
the same model defined on a tree?

• see recent works on finite size corrections for models 
defined on random graphs (Lucibello and Morone)



Numerical results on estimating 
correlations
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FIG. 1: Error made by 5 mean-field approximations in estimating the correlation matrix, given the couplings.

Shown are typical samples of size N = 52 (the qualitative behavior does not change for larger sizes).

The discrepancy between true correlations C and those inferred C � is defined as

�C ⇤
⇥

1

N2

�

i,j

(Cij � C �
ij)

2 . (28)

In Figure 1 and 2 I report the typical behavior of the error �C between exact and estimated

correlation matrices for 5 di⇥erent MFA. Figure 1 shows results for models defined on a 2D square

lattice, while Figure 2 refers to FC and 3D topologies. In order to compare the MFA estimates

with the exact correlation matrices I am studying here small systems, but the qualitative behavior

does not change for larger sizes.

Although the quantitative behavior of �C depends on the specific sample, some general state-

ments can be made:

• naive MF is typically the worst MFA and shows many spurious singularities (roughly one

for each peak in �C);

• TAP and 4th order approximations typically show no (or very rare) singularities;

• the best estimate is typically provided by BA and TAP, with BA being the best unless it

has a singularity (in this case TAP becomes the best at lower temperatures, higher �).
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Although the quantitative behavior of �C depends on the specific sample, some general state-

ments can be made:

• naive MF is typically the worst MFA and shows many spurious singularities (roughly one

for each peak in �C);

• TAP and 4th order approximations typically show no (or very rare) singularities;

• the best estimate is typically provided by BA and TAP, with BA being the best unless it

has a singularity (in this case TAP becomes the best at lower temperatures, higher �).
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Matching data and MF predictions
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MFA for the inverse Ising problem

7

The inverse correlation matrices C�1 for the three MFA discussed above are given by the following

expressions:

naive MF (C�1
nMF)ij =

�ij
1�m2

i

� Jij , (20)

TAP (C�1
TAP)ij =

⇤
1

1�m2
i

+
⇧

k

J2
ik(1�m2

k)

⌅
�ij �

�
Jij + 2J2

ijmimj
⇥
, (21)

Bethe (C�1
BA)ij =

⇤
1

1�m2
i

�
⇧

k

tikf2(mk,mi, tik)

1� t2ikf(mk,mi, tik)2

⌅
�ij �

tijf1(mj ,mi, tij)

1� t2ijf(mj ,mi, tij)2
, (22)

where f1(m1,m2, t) ⇥ ⌅f(m1,m2, t)/⌅m1 and f2(m1,m2, t) ⇥ ⌅f(m1,m2, t)/⌅m2. From these

expressions one can obtain directly any correlation by simply computing the inverse of a matrix.

Please note that Eq.(22) gives exactly the same solution found by the SuscProp iterative al-

gorithm [9], which is presently considered one among the best inference algorithms. The main

advantage of Eq.(22) is that it always provides the correlation matrix, even in those cases where

SuscProp does not converge to the fixed point. Moreover inverting a matrix takes roughly the same

time of a single iteration of SuscProp, and so using Eq.(22) is much faster than running SuscProp,

even when the latter converges.

Nevertheless, it is fair to notice that the use of Eq.(22) does not solve all the problems related to

the lack of convergence of SuscProp. Indeed, during the many tests I have run, I noticed that often

the lack of convergence of SuscProp does correspond to the BA fixed point becoming unphysical:

in these cases, by inverting the correlation matrix provided by Eq.(22), one gets an unphysical

correlation matrix (e.g. a correlation matrix with negative diagonal elements!). In this sense the

lack of convergence of SuscProp gives a warning that the “blind” use of Eq.(22) does not provide.

So, a general suggestion when using the above formulas, providing an analytical expression for the

correlation matrices under a MFA, is to check explicitly the physical consistency of the outcome.

One may comment that Eq.(22) contains the magnetizations and the iterative computation of

these (i.e. the BP algorithm) su�ers the same convergence problems of SuscProp: this is easy to

prove, given that the homogeneous SuscProp equations are nothing but the iterative equations for

evolving under BP a small perturbation in the magnetization, and so BP is unstable if SuscProp

does not converge. However there are provably convergent algorithms for the computation of

magnetizations under the BA [29, 30]: the use of these algorithms in conjunction with Eq.(22)

allows a direct computation of correlations under the BA. Moreover there are situations where

magnetizations are known a priori and Eq.(22) can be applied directly: e.g. when symmetries in

the probability measure force magnetizations to be zero, or in the inverse Ising problem, where

JnMF
ij = �(C�1)ij=)
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IV. METHODS FOR THE INVERSE ISING PROBLEM

I consider 4 di⇥erent approximations for solving the inverse Ising problem. The simplest one

is the independent-pair (IP) approximation, already discussed in Section I and recalled here for

convenience

J IP
ij =

1

4
ln

⇧

⌥

�
(1 +mi)(1 +mj) + Cij

⇥�
(1�mi)(1�mj) + Cij

⇥

�
(1 +mi)(1�mj)� Cij

⇥�
(1�mi)(1 +mj)� Cij

⇥

⌃

� . (30)

Among the MFA which can be derived from the Plefka expansion, I consider only TAP and BA,

because are those performing better in the direct problem of estimating correlations (see Section II).

The corresponding expressions for the inferred couplings can be obtained by solving the equation

2mimjJ
2
ij + Jij + (C�1)ij = 0 ⌅(i ⇤= j) (31)

for TAP and the equation

(C�1)ij =
�tijf1(mj ,mi, tij)

1� t2ijf(mj ,mi, tij)2
=

�tij↵
(1� t2ij)

2 � 4tij(mi � tijmj)(mj � tijmi)
⌅(i ⇤= j) (32)

for the BA, thus leading to

JTAP
ij =

⌦
1� 8mimj(C�1)ij � 1

4mimj
, (33)

JBA
ij = �atanh

⇤
1

2(C�1)ij

↵
1 + 4(1�m2

i )(1�m2
j )(C

�1)2ij �mimj �

1

2(C�1)ij

��↵
1 + 4(1�m2

i )(1�m2
j )(C

�1)2ij � 2mimj(C�1)ij
⇥2

� 4(C�1)2ij

⌅
. (34)

The fourth approximation I am considering has been obtained from a small correlation expansion

by Sessak and Monasson [16] and has been further simplified in Ref. 27 to the following expression

JSM
ij = �(C�1)ij + J IP

ij � Cij

(1�m2
i )(1�m2

j )� (Cij)2
. (35)

For each approximation, I measure the error in inferred couplings J ⇥
ij with respect to the true

ones Jij by the following expression

�J =

� 
i<j(J

⇥
ij � Jij)2 

i<j J
2
ij

. (36)

I study both diluted ferromagnetic model with a fraction p of non-zero couplings (Jij = �) and

undiluted spin glass models (Jij = ±� with probability 1/2). I also consider several topologies: 2D

+
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More MFA for the
inverse Ising problem

• Independent pair (IP) approximation

• Sessak-Monasson (SM) small correlation expansion
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Numerical results for the inverse 
Ising problem
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Improving correlations by a 
normalization trick

• In ferromagnetic models with loops,
linear response correlations in BA are
too strong because of loops, which are
“unexpected” in SuscProp

• Leading to                   which is unphysical

• Trick: enforce                   by a normalization

BP for SG on a 2D lattice

pure ferro
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Characterizing and improving generalized belief propagation algorithms on the 2D Edwards–Anderson model

Figure 4. Probability of convergence of BP and GBP on a 2D EA model, with
random bimodal interactions, as a function of the inverse temperature β = 1/T .
The Bethe spin glass transition is expected to occur at βBethe ≃ 0.66 on a random
graph with the same connectivity. The BP message passing algorithm on the 2D
EA model stops converging very close to that point. Above that temperature,
BP equations converge to the paramagnetic solution, i.e. all messages are trivial,
u = 0. Below the Bethe temperature (nearly) the Bethe instability takes messages
away from the paramagnetic solution, and the presence of short loops is thought to
be responsible for the lack of convergence. On the other hand, the GBP equations
converge at lower temperatures, but eventually stop converging as well.

high temperatures (above TBethe = 1/βBethe ≃ 1.51) in a typical instance of the model
with bimodal interactions, we find the paramagnetic solution (given by all fields u = 0),
and, therefore, the system is equivalent to a set of independent interacting pairs of spins,
which is only correct at infinite temperature. The Bethe temperature TBethe (computed in
the average case and exact on acyclic graphs4), seems to mark precisely the point where
BP stops converging (see figure 4). Indeed messages flow away from zero below TBethe,
and convergence of the BP message passing algorithm is not achieved anymore. So, the
Bethe approximation is disappointing when applied to single instances of the Edwards–
Anderson model: either it converges to a paramagnetic solution at high temperatures, or
it does not converge at all below TBethe.

The natural question arises as to what extent the GBP message passing algorithm for
the plaquette-CVM approximation is also nonconvergent below its critical temperature,
and whether this temperature coincides with the average case one. To check this we
used GBP message passing equations (5) and (6), with a damping factor of 0.5 in the

4 The Bethe temperature TBethe is the one at which a nontrivial spin glass solution appears for a random regular
Bethe lattice with connectivity K = 4. The Bethe lattice looks locally like a tree.
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3 Bethe Approximation:
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⎪
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PBethe({si}) =
∏

i ,j
bi ,j(si , sj)

∏

i
bi(si )−ci

- Exact on Trees
- Good on sparse systems
- Message Passing (BP)

4 Constrained minimization: b(si) =
∑

sj b(si , sj )

Alejandro Lage-Castellanos, et.al. (1) CVM on 2D EA model La Sapienza, February, 2012 7 / 42
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Make MFA & LR consistent

Add Lagrange multipliers to your referred MF free-energy 

to enforce consistency with linear response estimates

“Consistency is more important than truth” (S. Ting)

�ii = 1�m2
i �ij = Cij

free energy
minimum
location

free energy
minimum
curvature

FMFA({mi}, {Cij}, . . .)



General framework (MFA + LR)

Your preferred MFA

F� = FMFA({mi}, {Cij}, . . .) +
X

i

�im
2
i +

X

i<j

�ijCij

can be set to zero to
recover known approx.

or used to satisfy
�ii = 1�m2

i �ij = Cij



Nearest-neighbor correlation
(2D square lattice)
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Off-diagonal constraint only
JACK RAYMOND AND FEDERICO RICCI-TERSENGHI PHYSICAL REVIEW E 87, 052111 (2013)
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FIG. 6. (Color online) THL: error in inference of J from exact
statistics.

the locally stable unmagnetized solution. A discontinuous
transition from the paramagnetic to the ferromagnetic solution
is apparent in these cases.

The curves of Fig. 5 also dictate the dynamics of the iterative
procedure (27) with other terms [(26) and (28)] at their fixed
point values. Due to the large gradient at the unmagnetized
fixed point strong damping is required in the proposed iterative
method to find the unmagnetized solutions for large β (large |β|
in the case of frustrated regimes). By contrast, the magnetized
solution (or pseudosolution, if we allow χnn ∼ Cnn) has benign
dynamics.

C. Inverse problem

A simpler application of our method is for the inverse
problem: Given sample statistics, determine J and H [18,23].
With ignorance of the distribution of couplings (and topology),
we must have unbiased region selection: all edges for Bethe
and all (triangular) Plaquettes for P3. In our method we
take C and χ equal to the correlation statistics and solve,
first, (19) in the off-diagonal elements for Jij and then (14)
for H . Equation (15) can be used to determine λ, which
would be a measure of model fidelity. In standard mean-
field methods the same assumptions are made on region
selection, but only χ and {Ci} are determined from the
statistics; all other C obey the saddle-point equations (15)
with λ = 0 (thus making equations solvable for Bethe and TAP
[18]).

Figure 6 demonstrates the results for estimation of matrix J
in the HTL L = 5 based on exact data. The improved scaling at
small |β| is as anticipated in Eqs. (24) and (25). However, even
at low temperature, reconstruction is significantly improved
by our methods. Although $nn determines the error, note
that the approximation differs from that used in the direct
problem: The 2D triangular structure is discovered, unlike
in the direct problem, where it is assumed in the region
selection.

Figure 7 demonstrates results for an instance of a 7 × 7
diluted square lattice Ising model in zero field. Each coupling
is assigned according to the probability distribution P (J ) =
0.7δJ,1 + 0.3δJ,0. The reconstruction assumes Hi = 0, but no
knowledge of J . We generated the pair-correlation matrix from
independent Monte Carlo measures. Sampling errors limit all
methods for small β. When β is large enough, the error of
the method exceeds the sampling one. A β interval exists in
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FIG. 7. (Color online) Error in inferring couplings J for a diluted
2D square ferromagnet, from statistics of 106 independent samples.
[KR] employs the Kappen-Rodriguez normalization [10].

which our methods improve over standard ones. The triangular
Plaquette approximation improves over Bethe, despite the
absense of triangles in the model (the shortest loop is of
length 4). For larger β the model undergoes a rapid growth in
correlation length, edge and/or triangular regions are relatively
small and account for only a small fraction of the significant
correlations, all mean-field methods are prone to significant
errors.

Since at the Bethe level our method coincides with the
Sessak-Monasson expression it is not a surprise that we
outperform other mean-field methods at high temperature
due to the improved scaling (24). The plaquette approxima-
tion is by no means guaranteed to outperform the Sessak-
Monasson expression outside the weak-coupling regime where
a superior (25) scaling applies, but this advantage persists
at intermediate temperatures for the two models presented.
Realization of the high temperature scaling is only feasible if
data are of very high quality; in practical applications this is
unlikely, as sampling will be subject to errors and performance
may not be significantly improved over NMF. The more
interesting comparison of methods is for intermediate and low
temperatures.

We studied, for example, the 2D square lattice Edward-
Anderson model with zero field and J = ±1 coupling dis-
tribution across a range of system sizes L = 4 to L = 32 at
intermediate temperatures β ∈ [0.3,0.8] and a small number
of samples for each system size [24,25]. We found that the
λ ̸= 0 outperform standard implementations of Bethe and
NMF in all samples; however, for nearest couplings we
found that the Bethe (λ ̸= 0) method provided a marginally
superior estimate (i.e., estimates of Jij were closer to 1 in
absolute value for nearest neighbors i,j ), while the P3(λ ̸= 0)
approximation provided a marginally superior estimate for the
absent couplings (i.e., estimates were closer to 0 for Jij , where
ij are not nearest neighbors). We will present a more detailed
analysis of the inverse problem across a range of problems in
a forthcoming paper.

IV. DISCUSSION AND CONCLUSION

We propose a minimal modification to the mean-field
free-energy functional in order to make max-entropy estimates
of correlations consistent with LR ones; in other words,

052111-6

�J

Bethe + off-diagonal constraints = SM



Random field Ising model
2D square lattice
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Random field Ising model
2D square lattice
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Random field Ising model
2D square lattice
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Random field Ising model
2D square lattice

NN correlations
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Input data: Configurations

• More information than knowing only

• In principle one can access to all higher order 
correlations (but these are much more noisy)

• Many different inference algorithms. Among these:

• Adaptive cluster expansion

• cluster configurations & apply MFA within any state

mi = hsii Cij = hsisji �mimj



Pseudo-likelihood method (PLM)

• For each variable define a conditional probability

• Maximize the local log-likelihood

to estimate      and

• Note that for each coupling       PLM returns 2 estimates 

• Better maximizing 
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PLM vs. MFA
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Inferring topology in sparse models

• For simplicity let’s assume

•  

• non-zero couplings are sparse

• Maximize L1-regularized pseudo-likelihood

• L1-regularization gives a bias to the estimates!
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Couplings inferred by PLM

An important aspect in the inverse problem is therefore
to find an approximation that provides a reasonably good
estimate for the model parameters in a quick time (usually
polynomial in the system size). A review of known
approximations can be found in [15], to which we should
add the more recent methods, such as those based on the
Bethe approximation [3,4], the adaptive cluster expansion
[1], and the probabilistic flow method [16]. In this Letter
we compare our new decimation technique based on the
PLM against the l1 regularization, which is often used to
find the interaction topology [2,14,17]. The standard mean-
field method will not be considered, since in general it
performs weakly on finite dimensional systems. Neither
will the adaptive cluster expansion or the probabilistic flow
method be considered, since they strongly depend on
several subjective choices (thresholds, dynamics, etc…).
Instead of using the likelihood function, which is very

hard to compute, we use the PLF, PL ¼
P

rLr, where
the index r runs over all variables and the “local”
likelihood functions are Lr ¼ M−1PM

k¼1 logpðs
ðkÞ
r jsðkÞ\r Þ,

with pðsrjs
¯ \r
Þ≡ ½1þ expð−2βsrðhr þ

P
j≠r JrjsjÞÞ&−1

being the conditional probability of variable sr given the
rest of the system.
The standard implementation of the PLM consists in

maximizing each of the N local likelihood functions Lr
separately, thus getting two different estimates for each
coupling Jij: a first one J'iij from the maximum of Li and a

second one J'jij from the maximum of Lj (hereafter we
assume hi ¼ 0 and Jij ∈ f0; 1g for the ease of presenta-
tion). Since the Ising model has symmetric couplings, the
final estimate for the coupling Jij is then obtained by taking
the average, J'ij ¼ ðJ'iij þ J'jij Þ=2.
This method has been confronted against mean-field

methods for the SK model in [2] and it clearly estimates the
couplings much better at low temperatures. For sparse
models, its ability to infer correctly the interaction network
(i.e., which couplings are nonzero) is largely improved by
the use of the l1 regularization [14], thus maximizing the
local functions Ll1

r ¼ Lr þ λ
P

j≠rjJrjj, with a suitably
chosen (and not too large) λ regularizer. A further improve-
ment in inferring the model topology has been achieved [2]
by setting to zero all couplings whose estimate is below a
threshold, jJ'ijj < δ (but the choice of δ is delicate, as we
discuss below).
Using the standard PLM we observe that, in difficult

situations (e.g., when M is not large enough and temper-
ature is low) some couplings are largely overestimated,
jJ'ijj ≫ 1. In those cases, the inferred couplings are not
symmetric (J'iij ≠ J'jij ) and only one of the two estimates is
very large. The origin of this problem is to be found in the
data information content, that is sometimes very poor
around some variable si: in that case the estimates J'iij
are strongly unreliable (think, e.g., to what happen if in the
M samples si and its neighbors were almost always

perfectly aligned). This problem is often partially solved
by using the l1 regularization: the regularization parameter
λ adds a penalty on nonzero couplings and therefore
prevents a coupling from being too large. A drawback
of this approach is the tendency to underestimate globally
the couplings and is therefore not completely satisfying. In
this Letter, we choose a different solution: by maximizing
the PLF PL (rather than the N functions Lr separately) we
look for a compromise, where the estimate J'ij must be such
that both Li and Lj are reasonably large. The advantage of
this maximization is that it provides a unique estimate for
each coupling, which is in general of the right order of
magnitude (unless the information content of the data is
poor in a wide region). The PLF can be maximized by a
standard Newton method, while for the l1-regularized
functions we use the one of Ref. [18].
In inference problems, the “model selection” is the

ability to reduce the number of model parameters in order
to keep only the essential ones (by Occam’s razor rule the
simplest model fitting a data set is the one to be preferred).
This model selection is both crucial to identify the structure
underlying a data set (e.g., the interaction network or the
model topology) and to improve the quality of the coupling
estimates (relevant couplings are better inferred after
excluding the insignificant couplings from the model).
A common approach in the inverse Ising problem is to

choose which are the null couplings by putting a cut-off on
their estimated values. This is a reasonable choice as long
as a clear gap separates the estimates of null couplings (J0)
from those of nonzero couplings (J1), as it happens in the
left panel of Fig. 1. However at a lower temperature the gap
is completely absent and a good δ thresholding to split J0
and J1 is impossible (central panel of Fig. 1). For sparse
models, the use of the l1 regularization may induce a new
gap (see right panel of Fig. 1), but this l1-induced gap does
not always separates correctly J1 from J0 couplings and the
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FIG. 1 (color online). Histograms of couplings inferred by
PLM in a typical sample of 2D ferromagnetic Ising model with
30% dilution (M ¼ 4500). Left: at β ¼ 0.5 a clear gap identifies
couplings in J1 (drawn in dark blue). Center: at β ¼ 0.9 there is
no gap and couplings in J1 can not be identified. Right: with l1

regularization (λ ¼ 0.01) a gap is present, but does not allow us to
recover the topology perfectly.
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Decimation procedure

• No L1-regularizer -> no bias

• Maximize 

• Set to zero a constant fraction of couplings
(those inferred to be the smallest)

• Maximize again                  only on couplings still not set 
to zero (this is impossible within a MFA)

• Iterate until maximum of                  starts decreasing 
“sensibly”

PL(h,J)

PL(h,J)

PL(h,J)



PLM + decimation

topology can not be correctly recovered. Moreover the
estimates of J1 are systematically smaller than the true
values, and this is unavoidable when using the l1 regu-
larization. Finally, there is no consensus on how to choose
the λ value.
We propose a new method for inferring nonzero cou-

plings J1 that solves all the above problems. Our idea is to
recursively set to zero couplings which are estimated very
small by the PLM: we always maximize PL so as to avoid
too large couplings and the bias due to the l1 regulariza-
tion. At each decimation step we set to zero a finite fraction
ρ of the remaining couplings; as such, the total number of
steps is OðlogNÞ and the PLMþ decimation algorithm is
competitively fast. This fraction ρ is actually the only
choice left to the user and the results are largely indepen-
dent on it (in our tests we have used ρ ≤ 0.05). Setting
couplings to zero gradually is equivalent to using an
adaptive threshold with a very small δ value: so our new
method should perform better than any standard thresh-
olding procedure, especially because it does not require the
existence of a gap in the inferred couplings (thus avoiding
the use of l1 regularization that produces biased estimates
and a strong λ dependence).
The stopping criterion for the decimation procedure is

based on the behavior of the PLF. Indeed, we expect that as
long as the decimation procedure sets to zero couplings in
J0 which are unnecessary to fit the data, the PLF should not
change significantly. On the contrary, the pruning of a
coupling in J1 should produce a drastic decrease in the PLF
value. This expected behavior is confirmed by the numeri-
cal simulations. In practice we would like to stop the
decimation at the point where the PLF variation, ΔPL=Δn
with Δn being the number decimated couplings in the last
step, goes from “small” to “large” values. To make these
two adjectives quantitative, we can compute the overall
mean PLF variation during the decimation, that is the
change in PLF between the fully connected model [where
PL is maximized over all the NðN − 1Þ=2 possible
couplings and takes value PLmax] and the model of
independent variables [no couplings left by the decimation
and PLF equal to −N logð2Þ]. The mean PLF variation is
thus equal to ðPLmax þ N logð2ÞÞ2=ðNðN − 1ÞÞ, and we
propose to stop the decimation where the PLF variation
reaches this mean value, that should separate “small” from
“large” PLF variations. In practice it is more convenient to
define the stopping point as the maximum of the tilted PLF
(tPLF) PLtilted ≡ PL − xPLmax þ ð1 − xÞN logð2Þ, where
x is the fraction of nondecimated coupling. It is easy to
check that PLtilted ¼ 0 both before starting the decimation
(x ¼ 1) and on a model with no coupling (x ¼ 0). In the
interval [0,1] a maximum appears if correlations are present
in the data set.
In Fig. 2 we show, for a case where inference is difficult,

the tPLF as a function of the number of nondecimated
couplings and the corresponding error in inferring

couplings, defined as ϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
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ij

q
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The zoom in the inset clearly shows that the maximum
in the tPLF does corresponds to the minimum in the
inference error. Please notice also as the density of data
points along the curves changes, because we have
decreased the value of ρ during the decimation in order
to spend less time in the initial part (which is easy) and have
denser points close to maximum (and thus improve its
location).
Our new inference algorithm (PLMþ decimation) can

be very well compared to the standard PLM with l1

regularization and δ thresholding by plotting the corre-
sponding ROC curves (see Fig. 3). Each ROC curve is
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FIG. 2 (color online). Same model as Fig. 1 with β ¼ 0.9 and
M ¼ 4500. The tPLF increases as the number of nondecimated
couplings is reduced until it exhibits a maximum. In this case the
maximum corresponds to a complete recovery of the graph
topology and therefore to a small reconstruction error. The inset is
a zoom on the maximum region.
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FIG. 3 (color online). ROC curves for a typical sample of the
2D ferromagnetic Ising model with 30% of dilution at β ¼ 1.0
and M ¼ 4500 (difficult case). The upper right corner corre-
sponds to the perfect reconstruction. For PLMþ l1 curves are
drawn by varying λ and they almost coincide if the threshold δ is
correctly chosen in the gap, δ ∈ ½10−8; 10−2'. The better value
δ ¼ 0.1 can not be chosen without previous knowledge about the
topology. The PLMþ decimation is clearly inferring topology
better, even if PLMþ l1 is finely tuned over λ and δ.
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PLM + decimation

topology can not be correctly recovered. Moreover the
estimates of J1 are systematically smaller than the true
values, and this is unavoidable when using the l1 regu-
larization. Finally, there is no consensus on how to choose
the λ value.
We propose a new method for inferring nonzero cou-

plings J1 that solves all the above problems. Our idea is to
recursively set to zero couplings which are estimated very
small by the PLM: we always maximize PL so as to avoid
too large couplings and the bias due to the l1 regulariza-
tion. At each decimation step we set to zero a finite fraction
ρ of the remaining couplings; as such, the total number of
steps is OðlogNÞ and the PLMþ decimation algorithm is
competitively fast. This fraction ρ is actually the only
choice left to the user and the results are largely indepen-
dent on it (in our tests we have used ρ ≤ 0.05). Setting
couplings to zero gradually is equivalent to using an
adaptive threshold with a very small δ value: so our new
method should perform better than any standard thresh-
olding procedure, especially because it does not require the
existence of a gap in the inferred couplings (thus avoiding
the use of l1 regularization that produces biased estimates
and a strong λ dependence).
The stopping criterion for the decimation procedure is

based on the behavior of the PLF. Indeed, we expect that as
long as the decimation procedure sets to zero couplings in
J0 which are unnecessary to fit the data, the PLF should not
change significantly. On the contrary, the pruning of a
coupling in J1 should produce a drastic decrease in the PLF
value. This expected behavior is confirmed by the numeri-
cal simulations. In practice we would like to stop the
decimation at the point where the PLF variation, ΔPL=Δn
with Δn being the number decimated couplings in the last
step, goes from “small” to “large” values. To make these
two adjectives quantitative, we can compute the overall
mean PLF variation during the decimation, that is the
change in PLF between the fully connected model [where
PL is maximized over all the NðN − 1Þ=2 possible
couplings and takes value PLmax] and the model of
independent variables [no couplings left by the decimation
and PLF equal to −N logð2Þ]. The mean PLF variation is
thus equal to ðPLmax þ N logð2ÞÞ2=ðNðN − 1ÞÞ, and we
propose to stop the decimation where the PLF variation
reaches this mean value, that should separate “small” from
“large” PLF variations. In practice it is more convenient to
define the stopping point as the maximum of the tilted PLF
(tPLF) PLtilted ≡ PL − xPLmax þ ð1 − xÞN logð2Þ, where
x is the fraction of nondecimated coupling. It is easy to
check that PLtilted ¼ 0 both before starting the decimation
(x ¼ 1) and on a model with no coupling (x ¼ 0). In the
interval [0,1] a maximum appears if correlations are present
in the data set.
In Fig. 2 we show, for a case where inference is difficult,

the tPLF as a function of the number of nondecimated
couplings and the corresponding error in inferring

couplings, defined as ϵ ¼
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The zoom in the inset clearly shows that the maximum
in the tPLF does corresponds to the minimum in the
inference error. Please notice also as the density of data
points along the curves changes, because we have
decreased the value of ρ during the decimation in order
to spend less time in the initial part (which is easy) and have
denser points close to maximum (and thus improve its
location).
Our new inference algorithm (PLMþ decimation) can

be very well compared to the standard PLM with l1

regularization and δ thresholding by plotting the corre-
sponding ROC curves (see Fig. 3). Each ROC curve is
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FIG. 2 (color online). Same model as Fig. 1 with β ¼ 0.9 and
M ¼ 4500. The tPLF increases as the number of nondecimated
couplings is reduced until it exhibits a maximum. In this case the
maximum corresponds to a complete recovery of the graph
topology and therefore to a small reconstruction error. The inset is
a zoom on the maximum region.
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FIG. 3 (color online). ROC curves for a typical sample of the
2D ferromagnetic Ising model with 30% of dilution at β ¼ 1.0
and M ¼ 4500 (difficult case). The upper right corner corre-
sponds to the perfect reconstruction. For PLMþ l1 curves are
drawn by varying λ and they almost coincide if the threshold δ is
correctly chosen in the gap, δ ∈ ½10−8; 10−2'. The better value
δ ¼ 0.1 can not be chosen without previous knowledge about the
topology. The PLMþ decimation is clearly inferring topology
better, even if PLMþ l1 is finely tuned over λ and δ.
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Some conclusions

• Mean field approximations

• Inverse problem harder than direct problem

• Requires (at least) improvement in the direct problem

• Fundamental problem of going beyond Bethe and trees...

• Pseudo-likelihood method

• Better performances in general

• Specially well suited for inferring topology in sparse 
models via L1-regularization, thresholding or decimation


