A brief introduction to the inverse Ising problem and some algorithms to solve it

Federico Ricci-Tersenghi Physics Department
Sapienza University, Roma original results in collaboration with
Jack Raymond and Aurelien Decelle

Simplifications for this talk

- Ising variables $s_{i}= \pm 1$
- At most pairwise (two body) interactions.

The most general Hamiltonian is

$$
\mathcal{H}(\boldsymbol{s} \mid \boldsymbol{J}, \boldsymbol{h})=\sum J_{i j} s_{i} s_{j}+\sum_{i} h_{i} s_{i}
$$

with corresponding measure

$$
P\left(s_{1}, \ldots, s_{N}\right)=\frac{1}{Z(\boldsymbol{J}, \boldsymbol{h})} \exp \left[\sum_{i \neq j} J_{i j} s_{i} s_{j}+\sum_{i} h_{i} s_{i}\right]
$$

The direct problem (main pb. in stat. mech.)

- Given the Hamiltonian, compute the free energy

$$
F(\boldsymbol{J}, \boldsymbol{h})=\log Z(\boldsymbol{J}, \boldsymbol{h})=\log \sum_{\left\{s_{i}\right\}} \exp \left(\sum J_{i j} s_{i} s_{j}+\sum_{i} h_{i} s_{i}\right)
$$

and average values

$$
\langle\mathcal{O}\rangle=\sum_{s} \mathcal{O}(s) P(s)
$$

The sum is over exponentially many terms

The inverse Ising problem

- Given data generated according to

$$
P\left(s_{1}, \ldots, s_{N}\right)=\frac{1}{Z(\boldsymbol{J}, \boldsymbol{h})} \exp \left[\sum_{i \neq j} J_{i j} s_{i} s_{j}+\sum_{i} h_{i} s_{i}\right]
$$

which may be

- either M configurations of spins
- either magnetizations and correlations

$$
m_{i}=\left\langle s_{i}\right\rangle \quad C_{i j}=\left\langle s_{i} s_{j}\right\rangle-m_{i} m_{j}
$$

- GOAL: estimate couplings and fields (J,h)

The "exact" solution

Maximize the

$$
\begin{aligned}
& \text { e the } \quad L(\boldsymbol{J}, \boldsymbol{h} \mid \boldsymbol{s})=\frac{1}{M} \log \prod_{k=1}^{M} P\left(\boldsymbol{s}^{(k)} \mid \boldsymbol{J}, \boldsymbol{h}\right)= \\
& \text { hood }=\sum_{i} h_{i}\left\langle s_{i}\right\rangle+\sum_{i j} J_{i j}\left\langle s_{i} s_{j}\right\rangle-\log Z(\boldsymbol{J}, \boldsymbol{h}) \\
& =\sum_{i} h_{i} m_{i}+\sum_{i j} J_{i j}\left(C_{i j}+m_{i} m_{j}\right)+F(\boldsymbol{J}, \boldsymbol{h})
\end{aligned}
$$

Taking the derivatives

$$
\begin{aligned}
m_{i}+\partial_{h_{i}} F(\boldsymbol{J}, \boldsymbol{h})=0 & \Longrightarrow m_{i}(\mathrm{DATA})=m_{i}(\boldsymbol{J}, \boldsymbol{h}) \\
C_{i j}+m_{i} m_{j}+\partial_{J_{i j}} F(\boldsymbol{J}, \boldsymbol{h})=0 & \Longrightarrow C_{i j}(\mathrm{DATA})=C_{i j}(\boldsymbol{J}, \boldsymbol{h})
\end{aligned}
$$

Input data:
 Magnetizations and Correlations

- Less information than having configurations
- If only

$$
m_{i}=\left\langle s_{i}\right\rangle \quad C_{i j}=\left\langle s_{i} s_{j}\right\rangle-m_{i} m_{j}
$$

are given then maximum entropy principle implies Hamiltonian contains only single-body and two-body interactions

$$
\mathcal{H}(\boldsymbol{s} \mid \boldsymbol{J}, \boldsymbol{h})=\sum J_{i j} s_{i} s_{j}+\sum_{i} h_{i} s_{i}
$$

Brute force solution by Monte Carlo

Monte Carlo -> unbiased solution ...but it is slow!

Mean field approximations (MFA)

Log-likelihood $L(\boldsymbol{J}, \boldsymbol{h} \mid \boldsymbol{s})=\frac{1}{M} \log \prod_{k=1}^{M} P\left(\boldsymbol{s}^{(k)} \mid \boldsymbol{J}, \boldsymbol{h}\right)=$

$$
\begin{array}{r}
=\sum_{i} h_{i} m_{i}+\sum_{i j} J_{i j}\left(C_{i j}+m_{i} m_{j}\right)-\log Z(\boldsymbol{J}, \boldsymbol{h}) \\
F_{\mathrm{MFA}}^{\downarrow}(\boldsymbol{J}, \boldsymbol{h})
\end{array}
$$

$$
m_{i}^{\mathrm{MFA}}=-\partial_{h_{i}} F_{\mathrm{MFA}}(\boldsymbol{J}, \boldsymbol{h})
$$

$$
\begin{aligned}
& m_{i}^{\mathrm{MFA}}(\boldsymbol{J}, \boldsymbol{h})=m_{i}(\mathrm{DATA}) \\
& C_{i j}^{\mathrm{MFA}}(\boldsymbol{J}, \boldsymbol{h})=C_{i j}(\mathrm{DATA})
\end{aligned}
$$

MFA to the free-energy

- naive mean-field (nMF)

$$
P(s)=\prod_{i} P_{i}\left(s_{i}\right)
$$

$$
\begin{array}{r}
F_{\mathrm{nMF}}=\sum_{i}\left[H\left(\frac{1+m_{i}}{2}\right)+H\left(\frac{1-m_{i}}{2}\right)\right]+\sum_{i} h_{i} m_{i}+\sum_{i \neq j} J_{i j} m_{i} m_{j} \\
H(x) \equiv-x \ln (x)
\end{array}
$$

$\frac{\partial F_{\mathrm{nMF}}}{\partial m_{i}}=\sum_{j} J_{i j} m_{j}+h_{i}-\operatorname{atanh}\left(m_{i}\right)=0$

$$
m_{i}=\tanh \left[h_{i}+\sum_{j} J_{i j} m_{j}\right]
$$

MFA to the free-energy

- nMF + Onsager reaction term (TAP)

$$
\begin{aligned}
F_{\mathrm{TAP}}= & \sum_{i}\left[H\left(\frac{1+m_{i}}{2}\right)+H\left(\frac{1-m_{i}}{2}\right)\right]+ \\
& +\sum_{i} h_{i} m_{i}+\sum_{i \neq j}\left(J_{i j} m_{i} m_{j}+\frac{1}{2} J_{i j}^{2}\left(1-m_{i}^{2}\right)\left(1-m_{j}^{2}\right)\right)
\end{aligned}
$$

$$
m_{i}=\tanh \left[h_{i}+\sum_{j} J_{i j}\left(m_{j}-\frac{\left.J_{i j}\left(1-m_{j}^{2}\right) m_{i}\right)}{\downarrow}\right]\right.
$$

reaction term

MFA to the free-energy

- Plefka expansion in small J

$$
F_{\mathrm{nMF}}=\sum_{i}\left[H\left(\frac{1+m_{i}}{2}\right)+H\left(\frac{1-m_{i}}{2}\right)\right]+\sum_{i} h_{i} m_{i}+\sum_{i \neq j} J_{i j} m_{i} m_{j}
$$

$$
\begin{aligned}
F_{\mathrm{TAP}}= & \sum_{i}\left[H\left(\frac{1+m_{i}}{2}\right)+H\left(\frac{1-m_{i}}{2}\right)\right]+ \\
& +\sum_{i} h_{i} m_{i}+\sum_{i \neq j}\left(J_{i j} m_{i} m_{j}+\frac{1}{2} J_{i j}^{2}\left(1-m_{i}^{2}\right)\left(1-m_{j}^{2}\right)\right)
\end{aligned}
$$

MFA to the free-energy

- Bethe approximation (BA)
- tries to include any correlations between n.n. spins
- in principle no small J required (but beware to phase transitions)
- factorization over links

$$
P(s)=\prod_{i} P_{i}\left(s_{i}\right) \prod_{i j} \frac{P_{i j}\left(s_{i}, s_{j}\right)}{P_{i}\left(s_{i}\right) P_{j}\left(s_{j}\right)}
$$

- exact on trees

MFA to the free-energy

- Bethe approximation (BA)

$$
\begin{array}{r}
F_{\mathrm{BA}}=\sum_{i \neq j}\left[H\left(\frac{\left(1+m_{i}\right)\left(1+m_{j}\right)+c_{i j}}{4}\right)+H\left(\frac{\left(1-m_{i}\right)\left(1-m_{j}\right)+c_{i j}}{4}\right)+\right. \\
\left.+H\left(\frac{\left(1+m_{i}\right)\left(1-m_{j}\right)-c_{i j}}{4}\right)+H\left(\frac{\left(1-m_{i}\right)\left(1+m_{j}\right)-c_{i j}}{4}\right)\right]+ \\
+\sum_{i}\left(1-d_{i}\right)\left[H\left(\frac{1+m_{i}}{2}\right)+H\left(\frac{1-m_{i}}{2}\right)\right]+\sum_{i} h_{i} m_{i}+\sum_{i \neq j} J_{i j}\left(c_{i j}+m_{i} m_{j}\right)
\end{array}
$$

$$
\begin{aligned}
& \partial F_{\mathrm{BA}} / \partial c_{i j}=0 \\
& \forall \\
& c_{i j}\left(m_{i}, m_{j}, t_{i j}\right)=\frac{1}{2 t_{i j}}\left(1+t_{i j}^{2}-\sqrt{\left(1-t_{i j}^{2}\right)^{2}-4 t_{i j}\left(m_{i}-t_{i j} m_{j}\right)\left(m_{j}-t_{i j} m_{i}\right)}\right)-m_{i} m_{j}
\end{aligned}
$$

MFA to the free-energy

- Bethe approximation (BA) and cavity method

$$
\begin{aligned}
& m_{i}=\frac{m_{i}^{(j)}+t_{i j} m_{j}^{(i)}}{1+m_{i}^{(j)} t_{i j} m_{j}^{(i)}} \quad m_{i}^{(j)}: \begin{array}{l}
\text { magnetization of } \mathbf{i} \\
\text { in absence of } j
\end{array} \\
& m_{j}=\frac{t_{i j} m_{i}^{(j)}+m_{j}^{(i)}}{1+m_{i}^{(j)} t_{i j} m_{j}^{(i)}} \\
& m_{i}^{(j)}=f\left(m_{i}, m_{j}, t_{i j}\right) \quad m_{j}^{(i)}=f\left(m_{j}, m_{i}, t_{i j}\right) \\
& f\left(m_{1}, m_{2}, t\right)=\frac{1-t^{2}-\sqrt{\left(1-t^{2}\right)^{2}-4 t\left(m_{1}-m_{2} t\right)\left(m_{2}-m_{1} t\right)}}{2 t\left(m_{2}-m_{1} t\right)}
\end{aligned}
$$

MFA to the free-energy

- Bethe approximation (BA) and cavity method

$$
\begin{gathered}
f\left(m_{1}, m_{2}, t\right)=\frac{1-t^{2}-\sqrt{\left(1-t^{2}\right)^{2}-4 t\left(m_{1}-m_{2} t\right)\left(m_{2}-m_{1} t\right)}}{2 t\left(m_{2}-m_{1} t\right)} \\
m_{i}=\tanh \left[h_{i}+\sum_{j} \operatorname{atanh}\left(t_{i j} f\left(m_{j}, m_{i}, t_{i j}\right)\right)\right]
\end{gathered}
$$

Small J expansion gives nMF, TAP, ...
$h_{i}+\sum_{j} \operatorname{atanh}\left(t_{i j} f\left(m_{j}, m_{i}, t_{i j}\right)\right) \simeq h_{i}+\sum_{j}\left(J_{i j} m_{j}-J_{i j}^{2}\left(1-m_{j}^{2}\right) m_{i}+\ldots\right)$

Computing correlations by linear response

- Correlations are trivial in MFA $C_{i j}=0$ in nMF, TAP and BA (between distant spins)
- Non trivial correlations can be obtained by using the linear response (Kappen Rodriguez, 1998)

$$
\begin{gathered}
\chi_{i j}=\frac{\partial m_{i}}{\partial h_{j}} \quad\left(\chi^{-1}\right)_{i j}=\frac{\partial h_{i}}{\partial m_{j}} \\
\left(\chi_{\mathrm{nMF}}^{-1}\right)_{i j}=\frac{\delta_{i j}}{1-m_{i}^{2}}-J_{i j}, \\
\left(\chi_{\mathrm{TAP}}^{-1}\right)_{i j}=\left[\frac{1}{1-m_{i}^{2}}+\sum_{k} J_{i k}^{2}\left(1-m_{k}^{2}\right)\right] \delta_{i j}-\left(J_{i j}+2 J_{i j}^{2} m_{i} m_{j}\right)
\end{gathered}
$$

Computing correlations by linear response in BA

- Analytic expression for the linear responses in BA

$$
\left(\chi_{\mathrm{BA}}^{-1}\right)_{i j}=\left[\frac{1}{1-m_{i}^{2}}-\sum_{k} \frac{t_{i k} f_{2}\left(m_{k}, m_{i}, t_{i k}\right)}{1-t_{i k}^{2} f\left(m_{k}, m_{i}, t_{i k}\right)^{2}}\right] \delta_{i j}-\frac{t_{i j} f_{1}\left(m_{j}, m_{i}, t_{i j}\right)}{1-t_{i j}^{2} f\left(m_{j}, m_{i}, t_{i j}\right)^{2}}
$$

- Coincide with the fixed point of Susceptibility Propagation
- No need to run any algorithm!

Solving the inverse problem by MFA

- Match measured magnetizations and correlations with MF approximated magnetizations and linear responses

$$
\begin{aligned}
& m_{i}^{\mathrm{MFA}}(\boldsymbol{J}, \boldsymbol{h})=m_{i}(\mathrm{DATA}) \\
& \chi_{i j}^{\mathrm{MFA}}(\boldsymbol{J}, \boldsymbol{h})=C_{i j}(\mathrm{DATA})
\end{aligned}
$$

- Under the Bethe approx. one could use either

$$
c_{i j}^{\mathrm{BA}} \text { or } \chi_{i j}^{\mathrm{BA}}
$$

for n.n. correlations. Which one is better?

Zero field case is simpler

- If all field are zero, then magnetizations are null by symmetry, and expressions simplify to
naive MF $\quad\left(\chi_{\mathrm{nMF}}^{\prime-1}\right)_{i j}=\delta_{i j}-J_{i j}$,
TAP $\quad\left(\chi_{\text {TAP }}^{-1}\right)_{i j}=\left[1+\sum_{k} J_{i k}^{2}\right] \delta_{i j}-J_{i j}$,
Bethe $\quad\left(\chi_{\mathrm{BA}}^{-1}\right)_{i j}=\left[1+\sum_{k} \frac{t_{i k}^{2}}{1-t_{i k}^{2}}\right] \delta_{i j}-\frac{t_{i j}}{1-t_{i j}^{2}}$,

Exactly solvable case for the inverse Ising problem?

- Curie-Weiss model, fully connected $J_{i j}=\beta /(N-1)$ nMF approximation

Exactly solvable case for the inverse Ising problem?

- Curie-Weiss model, fully connected $J_{i j}=\beta /(N-1)$ more MFA ($\mathrm{N}=20$)

Exactly solvable case for the inverse Ising problem?

- Bethe approximation on trees is ok
- Bethe approximation on random graph is ok only far from the critical point (as nMF for the Curie-Weiss model)
- How much the paramagnetic properties of a model on a finite size random graph are different from those of the same model defined on a tree?
- see recent works on finite size corrections for models defined on random graphs (Lucibello and Morone)

Numerical results on estimating correlations

$$
\Delta_{C} \equiv \sqrt{\frac{1}{N^{2}} \sum_{i, j}\left(\chi_{i j}-C_{i j}\right)^{2}}
$$

Matching data and MF predictions

$$
\left(\begin{array}{lll}
1 & & C_{i j} \\
& \ddots & \\
C_{i j} & & 1
\end{array}\right) \stackrel{?}{=}\left(\begin{array}{lll}
\chi_{11} & & \chi_{i j} \\
& \ddots & \\
\chi_{i j} & & \chi_{N N}
\end{array}\right)
$$

- Usually only off-diagonal elements are used

$$
J_{i j}=-\left(C^{-1}\right)_{i j}
$$

and diagonal elements are ignored...

MFA for the inverse Ising problem

$$
\begin{aligned}
J_{i j}^{\mathrm{BA}}= & -\operatorname{atanh}\left[\frac{1}{2\left(C^{-1}\right)_{i j}} \sqrt{1+4\left(1-m_{i}^{2}\right)\left(1-m_{j}^{2}\right)\left(C^{-1}\right)_{i j}^{2}}-m_{i} m_{j}-\right. \\
& \left.\frac{1}{2\left(C^{-1}\right)_{i j}} \sqrt{\left(\sqrt{1+4\left(1-m_{i}^{2}\right)\left(1-m_{j}^{2}\right)\left(C^{-1}\right)_{i j}^{2}}-2 m_{i} m_{j}\left(C^{-1}\right)_{i j}\right)^{2}-4\left(C^{-1}\right)_{i j}^{2}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left(\chi_{\mathrm{nMF}}^{-1}\right)_{i j}=\stackrel{\text { if }}{\mathcal{L} m_{\lambda}^{2}}-J_{i j}, \Longrightarrow J_{i j}^{\mathrm{MMF}}=-\left(C^{-1}\right)_{i j}
\end{aligned}
$$

$$
\begin{aligned}
& J_{i j}^{\mathrm{TAP}}=\frac{\sqrt{1-8 m_{i} m_{j}\left(C^{-1}\right)_{i j}}-1}{4 m_{i} m_{j}}
\end{aligned}
$$

More MFA for the inverse Ising problem

- Independent pair (IP) approximation

$$
J_{i j}^{\mathrm{IP}}=\frac{1}{4} \ln \left(\frac{\left(\left(1+m_{i}\right)\left(1+m_{j}\right)+C_{i j}\right)\left(\left(1-m_{i}\right)\left(1-m_{j}\right)+C_{i j}\right)}{\left(\left(1+m_{i}\right)\left(1-m_{j}\right)-C_{i j}\right)\left(\left(1-m_{i}\right)\left(1+m_{j}\right)-C_{i j}\right)}\right)
$$

- Sessak-Monasson (SM) small correlation expansion

$$
J_{i j}^{\mathrm{SM}}=-\left(C^{-1}\right)_{i j}+J_{i j}^{\mathrm{IP}}-\frac{C_{i j}}{\left(1-m_{i}^{2}\right)\left(1-m_{j}^{2}\right)-\left(C_{i j}\right)^{2}}
$$

Numerical results for the inverse Ising problem

Improving correlations by a normalization trick

- In ferromagnetic models with loops, linear response correlations in BA are too strong because of loops, which are "unexpected" in SuscProp

- Leading to $\chi_{i i}>1$ which is unphysical
- Trick: enforce $\chi_{i i}=1$ by a normalization

$$
\widehat{\chi}_{i j}=\frac{\chi_{i j}}{\sqrt{\chi_{i i} \chi_{j j}}}
$$

Make MFA \& LR consistent

"Consistency is more important than truth" (S. Ting)
Add Lagrange multipliers to your referred MF free-energy

$$
F_{\mathrm{MFA}}\left(\left\{m_{i}\right\},\left\{C_{i j}\right\}, \ldots\right)
$$

to enforce consistency with linear response estimates

$$
\begin{gathered}
x_{i i}=1-m_{i}^{2} \\
\text { free energy } \\
\text { minimum } \\
\text { curvature }
\end{gathered} \begin{gathered}
\text { minimum } \\
\text { free energy } \\
\text { location }
\end{gathered}
$$

General framework (MFA + LR)

$$
\begin{array}{r}
\begin{array}{c}
F_{\lambda}=F_{\mathrm{MFA}}\left(\left\{m_{i}\right\},\left\{C_{i j}\right\}, \ldots\right)+\sum_{i} \lambda_{i} m_{i}^{2}+\sum_{i<j} \lambda_{i j} C_{i j} \\
\\
\text { Your preferred MFA } \\
\begin{array}{c}
\text { can be set to zero to } \\
\text { recover known approx. } \\
\text { or used to satisfy } \\
\chi_{i i}=1-m_{i}^{2}
\end{array} \quad \chi_{i j}=C_{i j}
\end{array}
\end{array}
$$

Nearest-neighbor correlation (2D square lattice)

Off-diagonal constraint only

Bethe + off-diagonal constraints $=$ SM

Random field Ising model 2D square lattice

Random field Ising model 2D square lattice

Random field Ising model 2D square lattice

Random field Ising model 2D square lattice

$$
\text { 2D RFIM <h> }=0.0 \quad \sigma_{h}=0.2 \quad \beta=0.25
$$

Input data: Configurations

- More information than knowing only

$$
m_{i}=\left\langle s_{i}\right\rangle \quad C_{i j}=\left\langle s_{i} s_{j}\right\rangle-m_{i} m_{j}
$$

- In principle one can access to all higher order correlations (but these are much more noisy)
- Many different inference algorithms. Among these:
- Adaptive cluster expansion
- cluster configurations \& apply MFA within any state

Pseudo-likelihood method (PLM)

- For each variable define a conditional probability

$$
P_{i}\left(s_{i} \mid \boldsymbol{s}_{\backslash i}\right)=\frac{\exp \left[s_{i}\left(h_{i}+\sum_{j} J_{i j} s_{j}\right)\right]}{2 \cosh \left(h_{i}+\sum_{j} J_{i j} s_{j}\right)}
$$

- Maximize the local log-likelihood $L_{i}=\left\langle\log P_{i}\left(s_{i} \mid s_{\backslash i}\right)\right\rangle=$ $h_{i} m_{i}+\sum_{j} J_{i j}\left(C_{i j}+m_{i} m_{j}\right)-\left\langle\log 2 \cosh \left(h_{i}+\sum_{j} J_{i j} s_{j}\right)\right\rangle$ to estimate h_{i} and $J_{i j}$
- Note that for each coupling $J_{i j}$ PLM returns 2 estimates
- Better maximizing $P L(\boldsymbol{h}, \boldsymbol{J})=\sum_{i} L_{i}$

PLM vs. MFA

Inferring topology in sparse models

- For simplicity let's assume
- $\left|J_{i j}\right| \in\{0, \beta\}$
- non-zero couplings are sparse
- Maximize L1-regularized pseudo-likelihood

$$
P L_{\lambda}(\boldsymbol{h}, \boldsymbol{J})=\sum_{i} L_{i}-\lambda \sum_{i j}\left|J_{i j}\right|
$$

- L1-regularization gives a bias to the estimates!

Couplings inferred by PLM

2D Ising model (30\% dilution) $M=4500$

Decimation procedure

- No L1-regularizer \rightarrow no bias
- Maximize $P L(\boldsymbol{h}, \boldsymbol{J})$
- Set to zero a constant fraction of couplings (those inferred to be the smallest)
- Maximize again $P L(\boldsymbol{h}, \boldsymbol{J})$ only on couplings still not set to zero (this is impossible within a MFA)
- Iterate until maximum of $P L(\boldsymbol{h}, \boldsymbol{J})$ starts decreasing "sensibly"

PLM + decimation

PLM + decimation

Some conclusions

- Mean field approximations
- Inverse problem harder than direct problem
- Requires (at least) improvement in the direct problem
- Fundamental problem of going beyond Bethe and trees...
- Pseudo-likelihood method
- Better performances in general
- Specially well suited for inferring topology in sparse models via L1-regularization, thresholding or decimation

