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> Generalized approximate messaging (GAMP)

® Graphical model approach for estimation with linear mixing

® Challenges with arbitrary matrices
¢ Max-Sum GAMP: Connections to ADMM
® Sum-Product GAMP: Free energy optimization
* Convergence in AWGN models

® Numerical examples

e Neural connectivity detection

® Conclusions
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Bayesian Estimation with Linear Mixing

4
e T o | = R

® Problem: Estimate x and z given 'y and A

* Many applications

* Communication channels, linear inverse problems,

regularized linear regression or classification

° Compressed sensing

® Challenge: Generically, optimal estimation is hard

* Components of vector x are coupled in z
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Factor Graph for Linear Mixing Estimation
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* Posterior p(x|y) factors due to separability assumptions
® Output factors and variables coupled by matrix A
* Can apply loopy BP when coupling is sparse.
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Generalized Approximate Message Passing

Input node update X A ” y OutputAnode update

T=5C\+TSA*S — ¥ mxn —] pY|Z(yi|zi) > p:Ax_TpS

% = Ex|r = x + N(0,7,)) 2=E(zly,z=p+N(0,1p))
S = (Z _ p)/Tp

® Traditional loopy BP requires sparse A

®* GAMP: Use Gaussian and quadratic approximations.
® Pass mean and variances

® Two variants:
® Max-sum for MAP estimation
® Sum-product for estimation of posterior marginals

* Computationally extremely simple

® Linear transforms + scalar AWGN problems
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History

* Gaussian approximations of belief propagation

* Multiuser CDMA & compressed sensing

® Boutros & Caire (02), Montanari & Tse (06), Guo & Wang (06),
Tanaka & Okada (06), Donoho, Maleki & Montanari (09).

® Many names: Approximate message passing (AMP), Approx BP, relaxed BP,
parallel interference cancellation (PIC), ....

® Closely related to expectation-propagation (Minka 01)

® Extensions :

®* EM: Krzakala, Mezard, Sausset, Sun, Zdeborova (2011,12), Vila, Schniter
(2011), Kamilov et al (2012)

® Turbo-hybrid: Schniter et al (2010+)
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Performance of GAMP

® Well-understood for large iid A:
® Scalar state evolution analysis

e Testable conditions for optimality even when non-convex

® Extensions to new matrices
® Sparse matrices: BouCai02, MonTse05, GuoW06,07, Ran10
® Dense iid: DMMO09, BayMon10, Ran10, JavMon11
® Spatially coupled matrices, KrzMSSZ11,12

® Other matrices: TulCaiVS11(free matrices)
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Example Bounded Noise Estimation

* Gaussian input with

bounded noise output

® Arises in quantization
e NP-hard problem

* GAMP cdlose to
optimal at n=50 and
outperforms best
known reconstruction
methods
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Is GAMP only valid for certain iid A?

A =iid, N(0,1) A =iid N(0.5,1)
10 ; , ® “Evidently, this promise

comes with the caveat
that message-passing
algorithms are speciﬁcally

designed to solve sparse-

recovery problems for

A Gaussian matrices. .. ,
g Felix Hermann, Nuit
| Blanche blog
Converges Diverges

rapidly
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MSE (dB)

Goals for this Talk

A =iid, N(0,1)

-40 ; ; ‘
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Converges
rapidly
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Diverges

Characterize the behavior
of GAMP for arbitrary

matrices
Optimization formulation

Relate to classic

optimization methods

Convergence results for

AWGN problems
Insights to fix GAMP
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* Generalized approximate messaging (GAMP)
® Graphical model approach for estimation with linear mixing

© Challenges with arbitrary matrices
> Max-Sum GAMP: Connections to ADMM
¢ Sum-Product GAMP: Free energy optimization

* Convergence in AWGN models

® Numerical examples

e Neural connectivity detection

® Conclusions
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Max-Sum GAMP& MAP Estimation

X 4
px(Tj) —» m‘:n — PY|Z(J’i|Zi) >

* Consider constrained optimization:
(X,z) = argmin f,.(x) + f,(z) s.t. z= Ax

® Separable functions f; (x) and f,(z)
* Equivalent to MAP estimation with :

fx(x) = —logp(x)
fz(z) = —logp(y|2)
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ADMM

® Define Lagrangian:

L(x,z,s) = f,,(x) + f,(2) + sT(z — Ax)

* Alternating direction method of multipliers (ADMM):
xt*1 = argmin £, (x) — stTAx + Q,.(x,xt, z%)
z* = argmin f,(z) + st'z + Q,(z,xt*1, zY)

St+1 St + CZ(Zt+1 _Axt+1)

® C(lassic technique in optimization:
* Convergence with appropriate auxiliary functions
® Minimizations often have simple closed-form expressions.
® Reduces to variant of iterative thresholding for compressed sensing
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Convergence of ADMM

* “Classic”’ ADMM uses quadratic penalties

a a
Qy =E||zt—Ax||2, Q. =§|Iz—Axt||2

* When f, and f; are convex, ADMM will converge for any a

* But, X-step optimization is not separable

* Use conjugate gradient steps with variable splitting

® Method of choice for many compressed sensing solvers
® Can also use inexact methods

® Bound quadratic with a separable augmenting function.
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Max-Sum GAMP as ADMM

® Theorem: Max-sum GAMP is equivalent to inexact ADMM:

xt*1 = argmin £, (x) — stT Ax + ||x — xt||? /21t
z'1 = argminf,(z) + sz + ||z — Ax"FH|? /2Tt

St+1 — St + (Zt+1 _Axt+1)/21.21;+1

* Implications:
* Fixed-point of GAMP are local maxima of posterior
® But, convergence 1s not guaranteed

* Adaptive, vector-valued step sizes

Wireless Research Lab N~ 7

YU:)( {\/f

@ N U j.-)/ 4) _1: 5/
POLYTECHNIC INSTITUTE OF NEW YORK UNIVERSITY

/




a I
Outline

* Generalized approximate messaging (GAMP)
® Graphical model approach for estimation with linear mixing

° Challenges with arbitrary matrices

® Max-Sum GAMP: Connections to ADMM
> Sum-Product GAMP: Free energy optimization
* Convergence in AWGN models

® Numerical examples

e Neural connectivity detection

® Conclusions
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Sum-Product GAMP

X 4
px(xj) —» mAn — Al pYIZ(inZi) >
X

® Produces estimates of the posterior marginals

p(x;ly) = p(x;) exp [—(xj - 7}')2/(2%)]
p(zily) = p(vilz) exp|—(z; — p)?*/(27})]

® Derived based on approximation of loopy BP

® But, no optimization interpretation
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Free Energy Optimization in Estimation

® Estimation as an optimization:

bx,z (x,z) = argmin D (bx,zl |px,z)

® Minimize over a tractable class

® Ex: Mean-field methods => use separable distribution

® Theorem (Yedidia, Freeman, Weiss, 2003):
Loopy BP minimizes the Bethe free energy.

© Optimization over marginal distributions
+ Consistency constraints
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Sum-Product GAMP

Free Energy Minimization

® Consider “energy” function:
J(by, b;, 7p) = D(by|le ) + D(b,||e 7)
+Hgauss (b, Tp)

® Second-order moment matching constraints btw by and b,.
E(z|b,) = AE(x|b,), T, = |Al*var(x|by)

e Similar in form to Bethe free energy

® Theorem: Fixed-points of sum-product GAMP are local
minima of](bx, b,, Tp)

Wireless Research Lab
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GAMP Distributions

® Minima of energy function have parametric form:
1
—logb,(z;) = f,,(z;) + . (zi —p)* +c
Tp;
1

2
2, (% =7)" +¢

— log bx(xj) = ij(xj) +

® Parameters P;, Tp,, 15, T r given by GAMP outputs

® Can be used as approximations of marginal distributions
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Sum Product GAMP as ADMM

® Define Lagrangian:
L =J(by b, 1) + sT(E(z|b,) — AE (x|by))

* Additional constraint T, = STy, § = |A|?

® GAMP iterations look like inexact ADMM and IST:

bl = argmin L(b,’é, b,, th,) +(1/27}) IE(2) — Axt||?
bitt = argmin L(by, bf, t5) + (1/278) ||E (x) — xt]|?

+(t8)*St,
T, = STy
1
st =st"1 4+ —t(E(z|b§) — AE(x|bL))
T
p
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* Generalized approximate messaging (GAMP)
® Graphical model approach for estimation with linear mixing

© Challenges with arbitrary matrices
® Max-Sum GAMP: Connections to ADMM
¢ Sum-Product GAMP: Free energy optimization

» Convergence in AWGN models

® Numerical examples

e Neural connectivity detection

® Conclusions
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Linear Gaussian Models

° Study convergence with simple Gaussian models:
x] NN(O;TO]'); Vi :Zi-l_N(OJTWi)

® GAMP is not best algorithm: Exact solution is available

® But, convergence on Gaussian models may provide insight:
® Johnson, Mailioutov, Willsky, NIPS 2006

® Note: When AWGN-GAMP converges:

® Means will be correct, but not variances in general

® Weiss, Freeman, 2001

Wireless Research Lab ——— -
YU:)( {\/f

N U j.-J ) . 3/?

POLYTECHNIC INSTITUTE OF NEW YORK UNIVERSITY

/




9

Wireless Research Lab

Variance Convergence

* AWGN vector-valued variance updates:

1
t — t t
Tp T TF,
1 T, To
t — t+1 _
br = ot Ix =77
S*Tg T, + To
e S=|A|? = componentwise magnitude squared

® Theorem: For any Ty, and Ty,
the AWGN variance updates converge to unique fixed points

® Subsequent results will consider algorithm with fixed variance
vectors.
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Proof of the Variance Convergence

® Define vector valued functions:

.t t .t t+1
gS'T.X' I_)TS’ gX'TS I_)T.'X.' ) g

Yx ° Ys

® Verity g satisfies:
° Monotonically increasing

e glatg) < ag(t,) fora = 1.
* Convergence now follows from R. D. Yates, “A framework
for uplink power control in cellular radio systems”, 1995

e Used for convergence of power control loops

i
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Convergence of the Means
Uniform Variance Update

® Consider constant case:

® Constant variances: Tgj = Tg, Tyj = Ty -

® Uniform variance updates in GAMP

® Theorem: The means of the AWGN GAMP will converge for

all Ty and 7T, it and only if

2(m +n)

Opmax(4) < — 1A|lZ

® Omax(A): maximum singular value

o ||A||12: = Frobenius norm = sum of singular values

Wireless Research Lab - UM
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Some Matrices Work...

* Convergence depends on bounded spread of singular values.

o Examples of convergent matrices:
® Random iid: Converges due to Marcenko-Pastur
® Subsampled unitary: 024, (A)=1, ||A||12; = min(m,n)
¢ Total variation operator: (AXx); = X; — X;_4

® Walk summable matrices:
Generalizes result by Maliutov, Johnson and Willsky (2006)
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But, Many Matrices Diverge

o Examples of matrices that do not converge:

® Lowrank: If A hasr equal singular values and other are zero:
2r(m +n) > mn = r > min(m,n) /2
e A € R™M*™M iq 4 linear filter' Ax = h * x for some filter h

6 o
suplH ()] < 5 2nf|H(e e

e Some matrices with large Nnon-zero means:

A=A0+[,l1T
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Proof of Convergence

e With constant variances system is linear:
L t—1

| =6 [+
6= [D(Ti)A* D(TffFl)_ [D(TS " _D(ITS)A]
e D(1) = diag (1)

® System is stable if and only if A4, (G) < 1

o Eigenvalue condition related to singular values of

F =D (z;/*)AD (1,/?)
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Non-Uniform Variance Updates

® Definition: Given a matrix A € Rmxn,

vectors U and VU are row-column normalizers for A if:
A = diag(u'/?)Adiag(v/?)
has equal row magnitudes and column magnitudes

e Ais unique up to a constant

® Theorem: For non-uniform variance update GAMP,
the means converge for all 7g and 7, if and only it

~12
|4]]
F

2(m +n)
mn

020 (/i) <
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Damping

* Damped updates: 05, 0, <1

st = (1- Hs)St_l T Hsgout(pt» ng)
xtH = (1- Hx)xt + ngin(rtr Tﬁ)

® Theorem: AWGN GAMP will converge for all Ty and 7, if
2(m+n) -2
|4l

mn
° Sufficiently large damping guarantees convergence

050,024 (A) <

® But, slower rate

* How to perform damping adaptively?
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SVD Variable Splitting

e Take SVD A = USV"™.
o Write z = Uw, w = SV ™x so that

ol = [sp- Zill] = Anew [3]

® New matrix A, can be row-column normalized to have
small range in singular values.

® Attractive solution for small to mid-size problems
® Cost of SVD is one time

® But, not feasible for large problems.

© Maybe detect dominant singular vectors?
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Beyond AWGN Problems

* With constant variances, nonlinear updates of the form
(St, xt+1) — G(St_l, xt)

® Derivative of

GI:[ , [ ) 0, [G(’)ut _G!)utD(T;;l)A]
GinD(t)A*  Gill o |

® Similar proof as AWGN case can be used since
Jin and gyt are always contractions.
* Will provide conditions for global stability of GAMP in general.

* Key challenge is that variances are not constant.
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* Generalized approximate messaging (GAMP)
® Graphical model approach for estimation with linear mixing

® Challenges with arbitrary matrices
¢ Max-Sum GAMP: Connections to ADMM
® Sum-Product GAMP: Free energy optimization
* Convergence in AWGN models

:> Numerical examples

e Neural connectivity detection

® Conclusions
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Ex 1. AWGN with Mean Shift

o A € R200X100

10\ T O\'\ T
i | Seweammes| . 4, ~N(0,0) + 10
O_Qamp'SYd step=0.5 R B e AWGN, SNR=30 dB

I " ® Damping can get
convergence

® But very slow.

30 ® SVD method converges

0 50100 10000 0 Sb 100 . . .
lteration lteration m ~ 1 OO 1terations
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Ex 2. Bernoulli-Gaussian

} o A E RlOOXZOO
S mmam% e A~N(0,0.1) + 10

| —9amp-svd step=05| |

° X;: sparsity = 0.1

® Damping does not

MSE (dB)

COIlVGl‘gG

20}

® But, SVD method
-40

0 2000 4000 6000 8000 10000 converges m - 100
lterati : .
srenen 1terations
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Ex 3: Large Range in Singular Values

20, -
gamp step=0.01 ® Matrix w/
15— gamp step=0.05 )
—— gamp-svd step=0.5 exponentlally
10 Mg s dlStrlbuted

5 . singular values
) 3
<l © .
=0 > ® Bernoulli-
2 2 o
sl ® Gaussian prior
0 | ® Damping
P (S R ineffective
20 - ® But, SVD method
0 500 1000

Iteration Number WOI‘](S
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Neural Dynamical System

® Infer connectivity from statistical

correlations in spike patterns

* Neural dynamical system
xtt1 = axt + WE
§t~Poisson(¢p(xh))

Ca imaging from David F. °

Measure ¢ from Ca-image
Meany lab, U Penn

® Infer connectivity W
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GLM model

® Neural dynamical system can be rewritten:

xt =Wwut + vt i+l = gt + &
® Generalized Linear Model
Et~Poisson( ¢p( Wut))

* Apply GAMP with matrix
A = [uO ul uT—l]*
® Matrix is noti.i.d
® Columns correlated by filtering

® Components arc€¢ non-zZ€ro Mmecan
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Fast Convergence

Iteration

Wireless Research Lab
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e SVD method converges

rapidly

® 6 to 10 iterations

® SVD can be approximately

computed via Fourier

transform

|
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* Generalized approximate messaging (GAMP)
® Graphical model approach for estimation with linear mixing

® Challenges with arbitrary matrices
¢ Max-Sum GAMP: Connections to ADMM
® Sum-Product GAMP: Free energy optimization
* Convergence in AWGN models

® Numerical examples

e Neural connectivity detection

:> Conclusions
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Conclusions

e AMP is a powerful algorithm for certain random matrices
e Reliable extension to arbitrary matrices remains main
outstanding obstacle to Widespread use

e Conventional optimization methods likely to remain dominant

e This talk:
L Optimization interpretation of GAMP

© Applies to max-sum and sum—product with arbitrary matrices
® Characterizes fixed points

* Convergence understood for linear AW GN models

e Still many questions. ..
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