Approximate Message Passing: Can it Work?

Sundeep Rangan (NYU-Poly)

Joint work with Alyson Fletcher (UCSC) École normale supérieure, Paris, France, 18 Nov 2013

Outline

Generalized approximate messaging (GAMP)

- Graphical model approach for estimation with linear mixing
- Challenges with arbitrary matrices
- Max-Sum GAMP: Connections to ADMM
- Sum-Product GAMP: Free energy optimization
- Convergence in AWGN models
- Numerical examples
 - Neural connectivity detection
- Conclusions

Bayesian Estimation with Linear Mixing

- Problem: Estimate **x** and **z** given **y** and **A**
- Many applications
 - Communication channels, linear inverse problems, regularized linear regression or classification
 - Compressed sensing
- Challenge: Generically, optimal estimation is hard
 - Components of vector **x** are coupled in **z**

Factor Graph for Linear Mixing Estimation

- Posterior $p(\mathbf{x} | \mathbf{y})$ factors due to separability assumptions
- Output factors and variables coupled by matrix **A**
- Can apply loopy BP when coupling is sparse.

Generalized Approximate Message Passing

Input node update
$$r = \hat{x} + \tau_s A^* s$$
 $\hat{x} = E(x|r = x + N(0, \tau_r))$

A mxn

 $\hat{x} = E(x|r = x + N(0, \tau_r))$

Output node update $p = A\hat{x} - \tau_p s$ $\hat{z} = E(z|y, z = p + N(0, \tau_p))$ $s = (z - p)/\tau_p$

- Traditional loopy BP requires sparse A
- GAMP: Use Gaussian and quadratic approximations.
 - Pass mean and variances
- Two variants:
 - Max-sum for MAP estimation
 - Sum-product for estimation of posterior marginals
- Computationally extremely simple
 - Linear transforms + scalar AWGN problems

History

- Gaussian approximations of belief propagation
 - Multiuser CDMA & compressed sensing
 - Boutros & Caire (02), Montanari & Tse (06), Guo & Wang (06), Tanaka & Okada (06), Donoho, Maleki & Montanari (09).
 - Many names: Approximate message passing (AMP), Approx BP, relaxed BP, parallel interference cancellation (PIC),
- Closely related to expectation-propagation (Minka 01)
- Extensions :
 - EM: Krzakala, Mezard, Sausset, Sun, Zdeborová (2011,12), Vila, Schniter (2011), Kamilov et al (2012)
 - Turbo-hybrid: Schniter et al (2010+)

Performance of GAMP

- Well-understood for large iid A:
 - Scalar state evolution analysis
 - Testable conditions for optimality even when non-convex
- Extensions to new matrices
 - Sparse matrices: BouCai02, MonTse05, GuoW06,07, Ran10
 - Dense iid: DMM09, BayMon10, Ran10, JavMon11
 - Spatially coupled matrices, KrzMSSZ11,12
 - Other matrices: TulCaiVS11(free matrices)

Example Bounded Noise Estimation

- Gaussian input with bounded noise output
- Arises in quantization
- NP-hard problem
- GAMP close to optimal at n=50 and outperforms best known reconstruction methods

Is GAMP only valid for certain iid A?

"Evidently, this promise comes with the caveat that message-passing algorithms are specifically designed to solve sparserecovery problems for Gaussian matrices...", Felix Hermann, Nuit Blanche blog

Diverges

rapidly

Goals for this Talk

A = iid, N(0,1)

A = iid N(0.5,1)

Converges rapidly

Diverges

- Characterize the behavior of GAMP for arbitrary matrices
- Optimization formulation
- Relate to classic optimization methods
- Convergence results for AWGN problems
- Insights to fix GAMP

Outline

- Generalized approximate messaging (GAMP)
 - Graphical model approach for estimation with linear mixing
 - Challenges with arbitrary matrices
- Max-Sum GAMP: Connections to ADMM
 - Sum-Product GAMP: Free energy optimization
 - Convergence in AWGN models
 - Numerical examples
 - Neural connectivity detection
 - Conclusions

Max-Sum GAMP& MAP Estimation

Consider constrained optimization:

$$(\widehat{\mathbf{x}}, \widehat{\mathbf{z}}) = \arg\min f_{\mathbf{x}}(\mathbf{x}) + f_{\mathbf{z}}(\mathbf{z}) \quad s. t. \ z = A\mathbf{x}$$

- Separable functions $f_{\chi}(\boldsymbol{x})$ and $f_{z}(\boldsymbol{z})$
- Equivalent to MAP estimation with :

$$f_{x}(\mathbf{x}) = -\log p(\mathbf{x})$$

$$f_{z}(\mathbf{z}) = -\log p(\mathbf{y}|\mathbf{z})$$

ADMM

Define Lagrangian:

$$L(x, z, s) = f_x(x) + f_z(z) + s^T(z - Ax)$$

• Alternating direction method of multipliers (ADMM):

$$x^{t+1} = \arg\min f_{x}(x) - s^{tT}Ax + Q_{x}(x, x^{t}, z^{t})$$

$$z^{t+1} = \arg\min f_{z}(z) + s^{tT}z + Q_{z}(z, x^{t+1}, z^{t})$$

$$s^{t+1} = s^{t} + \alpha(z^{t+1} - Ax^{t+1})$$

- Classic technique in optimization:
 - Convergence with appropriate auxiliary functions
 - Minimizations often have simple closed-form expressions.
 - Reduces to variant of iterative thresholding for compressed sensing

Convergence of ADMM

"Classic" ADMM uses quadratic penalties

$$Q_x = \frac{\alpha}{2} ||z^t - Ax||^2, \qquad Q_z = \frac{\alpha}{2} ||z - Ax^t||^2$$

- ullet When $f_{oldsymbol{\mathcal{Z}}}$ and $f_{oldsymbol{\mathcal{Z}}}$ are convex, ADMM will converge for any lpha
- But, x-step optimization is not separable
 - Use conjugate gradient steps with variable splitting
 - Method of choice for many compressed sensing solvers
- Can also use inexact methods
 - Bound quadratic with a separable augmenting function.

Max-Sum GAMP as ADMM

• Theorem: Max-sum GAMP is equivalent to inexact ADMM:

$$x^{t+1} = \arg\min f_x(x) - s^{tT}Ax + \|x - x^t\|^2 / 2\tau_r^t$$

$$z^{t+1} = \arg\min f_z(z) + s^{tT}z + \|z - Ax^{t+1}\|^2 / 2\tau_p^{t+1}$$

$$s^{t+1} = s^t + (z^{t+1} - Ax^{t+1}) / 2\tau_p^{t+1}$$

- Implications:
 - Fixed-point of GAMP are local maxima of posterior
 - But, convergence is not guaranteed
 - Adaptive, vector-valued step sizes

Outline

- Generalized approximate messaging (GAMP)
 - Graphical model approach for estimation with linear mixing
 - Challenges with arbitrary matrices
- Max-Sum GAMP: Connections to ADMM
 - Sum-Product GAMP: Free energy optimization
- Convergence in AWGN models
- Numerical examples
 - Neural connectivity detection
- Conclusions

Sum-Product GAMP

Produces estimates of the posterior marginals

$$p(x_j|\mathbf{y}) = p(x_j) \exp\left[-(x_j - r_j)^2/(2\tau_r)\right]$$
$$p(z_i|\mathbf{y}) = p(y_i|z_i) \exp\left[-(z_i - p_i)^2/(2\tau_p)\right]$$

- Derived based on approximation of loopy BP
- But, no optimization interpretation

Free Energy Optimization in Estimation

• Estimation as an optimization:

$$b_{x,z}(x,z) = \arg\min D(b_{x,z}||p_{x,z})$$

- Minimize over a tractable class
- Ex: Mean-field methods => use separable distribution
- Theorem (Yedidia, Freeman, Weiss, 2003): Loopy BP minimizes the Bethe free energy.
 - Optimization over marginal distributions
 + consistency constraints

Sum-Product GAMP Free Energy Minimization

• Consider "energy" function:

$$J(b_x, b_z, \tau_p) \coloneqq D(b_x || e^{-f_x}) + D(b_z || e^{-f_z}) + H_{gauss}(b_z, \tau_p)$$

- Second-order moment matching constraints btw b_x and b_z . $E(z|b_z) = AE(x|b_x)$, $\tau_p = |A|^2 var(x|b_x)$
- Similar in form to Bethe free energy
- Theorem: Fixed-points of sum-product GAMP are local minima of $J(b_x, b_z, \tau_p)$

GAMP Distributions

• Minima of energy function have parametric form:

$$-\log b_z(z_i) = f_{z_i}(z_i) + \frac{1}{2\tau_{p_i}}(z_i - p_i)^2 + c$$

$$-\log b_x(x_j) = f_{x_j}(x_j) + \frac{1}{2\tau_{r_j}}(x_j - r_j)^2 + c$$

- Parameters p_i , τ_{p_i} , r_j , τ_{r_i} given by GAMP outputs
- Can be used as approximations of marginal distributions

Sum Product GAMP as ADMM

Define Lagrangian:

$$L = J(b_x, b_z, \tau_p) + s^T(E(z|b_z) - AE(x|b_x))$$

- Additional constraint $\tau_p = S\tau_x$, $S = |A|^2$
- GAMP iterations look like inexact ADMM and IST:

$$\begin{aligned} b_z^t &= argmin \ L\big(b_x^t, b_z, \tau_p^t\big) + (1/2\tau_p^t) \ \|E(z) - Ax^t\|^2 \\ b_x^{t+1} &= argmin \ L\big(b_x, b_z^t, \tau_p^t\big) + (1/2\tau_r^t) \ \|E(x) - x^t\|^2 \\ &+ (\tau_s^t)^* S \tau_x \\ \tau_p^t &= S \tau_x^t \\ s^t &= s^{t-1} + \frac{1}{\tau_p^t} \big(E(z|b_z^t) - AE(x|b_x^t) \big) \end{aligned}$$

Outline

- Generalized approximate messaging (GAMP)
 - Graphical model approach for estimation with linear mixing
 - Challenges with arbitrary matrices
- Max-Sum GAMP: Connections to ADMM
- Sum-Product GAMP: Free energy optimization
- Convergence in AWGN models
 - Numerical examples
 - Neural connectivity detection
 - Conclusions

Linear Gaussian Models

• Study convergence with simple Gaussian models:

$$x_j \sim N(0, \tau_{0j}), \qquad y_i = z_i + N(0, \tau_{wi})$$

- GAMP is not best algorithm: Exact solution is available
- But, convergence on Gaussian models may provide insight:
 - Johnson, Mailioutov, Willsky, NIPS 2006
- Note: When AWGN-GAMP converges:
 - Means will be correct, but not variances in general
 - Weiss, Freeman, 2001

Variance Convergence

AWGN vector-valued variance updates:

$$\tau_p^t = S\tau_x^t, \qquad \tau_s^t = \frac{1}{\tau_p^t + \tau_w},$$

$$\tau_r^t = \frac{1}{S^*\tau_s^t}, \qquad \tau_x^{t+1} = \frac{\tau_r^t\tau_0}{\tau_r^t + \tau_0}$$

- $S = |A|^2 =$ componentwise magnitude squared
- Theorem: For any τ_w and τ_0 , the AWGN variance updates converge to unique fixed points
- Subsequent results will consider algorithm with fixed variance vectors.

Proof of the Variance Convergence

• Define vector valued functions:

$$g_s: \tau_x^t \mapsto \tau_s^t$$
,

$$g_s: \tau_x^t \mapsto \tau_s^t, \qquad g_x: \tau_s^t \mapsto \tau_x^{t+1}, \qquad g = g_x \circ g_s$$

$$g = g_x \circ g_s$$

- Verify g satisfies:
 - Monotonically increasing
 - $g(\alpha \tau_s) \le \alpha g(\tau_s)$ for $\alpha \ge 1$.
- Convergence now follows from R. D. Yates, "A framework for uplink power control in cellular radio systems", 1995
 - Used for convergence of power control loops

Convergence of the Means Uniform Variance Update

- Consider constant case:
 - Constant variances: $\tau_{0j} = \tau_0$, $\tau_{wi} = \tau_w$.
 - Uniform variance updates in GAMP
- Theorem: The means of the AWGN GAMP will converge for all au_0 and au_w if and only if

$$\sigma_{max}^2(A) < \frac{2(m+n)}{mn} ||A||_F^2$$

- $\sigma_{max}(A)$: maximum singular value
- $||A||_F^2$ = Frobenius norm = sum of singular values

Some Matrices Work...

$$\sigma_{max}^2(A) < \frac{2(m+n)}{mn} ||A||_F^2$$

- Convergence depends on bounded spread of singular values.
- Examples of convergent matrices:
 - Random iid: Converges due to Marcenko-Pastur
 - Subsampled unitary: $\sigma_{max}^2(A)=1$, $||A||_F^2=\min(m,n)$
 - Total variation operator: $(Ax)_i = x_i x_{i-1}$
 - Walk summable matrices:
 - Generalizes result by Maliutov, Johnson and Willsky (2006)

But, Many Matrices Diverge

$$\sigma_{max}^2(A) < \frac{2(m+n)}{mn} ||A||_F^2$$

- Examples of matrices that do not converge:
 - Low rank: If A has r equal singular values and other are zero: $2r(m+n) > mn \Rightarrow r > \min(m,n)/2$
 - $A \in \mathbb{R}^{m \times m}$ is a linear filter: Ax = h * x for some filter h

$$\sup_{\theta} |H(e^{i\theta})| < \frac{1}{2} \frac{1}{2\pi} \int |H(e^{i\theta})|^2 d\theta$$

• Some matrices with large non-zero means:

$$A = A_0 + \mu \mathbf{1}^T$$

Proof of Convergence

• With constant variances system is linear:

$$\begin{bmatrix} S^{t} \\ \chi^{t+1} \end{bmatrix} = G \begin{bmatrix} S^{t-1} \\ \chi^{t} \end{bmatrix} + b$$

$$\bullet G = \begin{bmatrix} I & 0 \\ D(\tau_{\chi})A^{*} & D(\tau_{\chi}\tau_{r}^{-1}) \end{bmatrix} \begin{bmatrix} D(\tau_{p}\tau_{s}) & -D(\tau_{s})A \\ 0 & I \end{bmatrix}$$

$$\bullet D(\tau) = diag(\tau)$$

- $D(\tau) = diag(\tau)$
- System is stable if and only if $\lambda_{max}(G) < 1$
- Eigenvalue condition related to singular values of

$$F = D\left(\tau_s^{1/2}\right) A D\left(\tau_x^{1/2}\right)$$

Non-Uniform Variance Updates

• Definition: Given a matrix $A \in \mathbb{R}^{m \times n}$, vectors u and v are row-column normalizers for A if:

$$\tilde{A} = \operatorname{diag}(u^{1/2})A\operatorname{diag}(v^{1/2})$$

has equal row magnitudes and column magnitudes

- ullet $ilde{A}$ is unique up to a constant
- Theorem: For non-uniform variance update GAMP, the means converge for all τ_0 and τ_w if and only if

$$\sigma_{max}^2(\tilde{A}) < \frac{2(m+n)}{mn} \|\tilde{A}\|_F^2$$

Damping

• Damped updates: θ_s , $\theta_x \le 1$ $s^t = (1 - \theta_s)s^{t-1} + \theta_s g_{out}(p^t, \tau_p^t)$ $x^{t+1} = (1 - \theta_x)x^t + \theta_x g_{in}(r^t, \tau_r^t)$

ullet Theorem: AWGN GAMP will converge for all au_0 and au_w if

$$\theta_s \theta_x \sigma_{max}^2(\tilde{A}) < \frac{2(m+n)}{mn} \|\tilde{A}\|_F^2$$

- Sufficiently large damping guarantees convergence
- But, slower rate
- How to perform damping adaptively?

SVD Variable Splitting

- Take SVD $A = USV^*$.
- Write z = Uw, $w = SV^*x$ so that

$$\begin{bmatrix} z \\ 0 \end{bmatrix} = \begin{bmatrix} 0 & U \\ SV^* & -I \end{bmatrix} \begin{bmatrix} x \\ w \end{bmatrix} = A_{new} \begin{bmatrix} x \\ w \end{bmatrix}$$

- New matrix A_{new} can be row-column normalized to have small range in singular values.
- Attractive solution for small to mid-size problems
 - Cost of SVD is one time
- But, not feasible for large problems.
 - Maybe detect dominant singular vectors?

Beyond AWGN Problems

- With constant variances, nonlinear updates of the form $(s^t, x^{t+1}) = G(s^{t-1}, x^t)$
 - Derivative of

$$G' = \begin{bmatrix} I & 0 \\ G'_{in}D(\tau_r)A^* & G'_{in} \end{bmatrix} \begin{bmatrix} G'_{out} & -G'_{out}D(\tau_p^{-1})A \\ 0 & I \end{bmatrix}$$

- Similar proof as AWGN case can be used since g_{in} and g_{out} are always contractions.
 - Will provide conditions for global stability of GAMP in general.
- Key challenge is that variances are not constant.

Outline

- Generalized approximate messaging (GAMP)
 - Graphical model approach for estimation with linear mixing
 - Challenges with arbitrary matrices
- Max-Sum GAMP: Connections to ADMM
- Sum-Product GAMP: Free energy optimization
- Convergence in AWGN models
 - Numerical examples
 - Neural connectivity detection
- Conclusions

Ex 1. AWGN with Mean Shift

- $A \in R^{200 \times 100}$
- $A_{ij} \sim N(0,0.1) + 10$
- AWGN, SNR=30 dB
- Damping can get convergence
- But very slow.
- SVD method converges in ~100 iterations

Ex 2. Bernoulli-Gaussian

- $\bullet \ A \in R^{100 \times 200}$
- $A_{ij} \sim N(0,0.1) + 10$
- x_i : sparsity = 0.1
- Damping does not converge
- But, SVD method converges in ~100 iterations

Ex 3: Large Range in Singular Values

- Matrix w/
 exponentially
 distributed
 singular values
- Bernoulli-Gaussian prior
- Damping ineffective
- But, SVD method works

Neural Dynamical System

Ca imaging from David F. Meany lab, U Penn

- Infer connectivity from statistical correlations in spike patterns
- Neural dynamical system $x^{t+1} = \alpha x^t + W\xi^t$ $\xi^t \sim Poisson(\phi(x^t))$
- Measure ξ^t from Ca-image
- ullet Infer connectivity $oldsymbol{W}$

GLM model

• Neural dynamical system can be rewritten:

$$x^t = Wu^t + v^t, \qquad v^{t+1} = \alpha v^t + \xi^t$$

Generalized Linear Model

$$\xi^t \sim \text{Poisson}(\phi(Wu^t))$$

Apply GAMP with matrix

$$A = [u^0 \ u^1 \ \cdots u^{T-1}]^*$$

- Matrix is not i.i.d
- Columns correlated by filtering
- Components are non-zero mean

Fast Convergence

- SVD method converges rapidly
 - 6 to 10 iterations
- SVD can be approximately computed via Fourier transform

Outline

- Generalized approximate messaging (GAMP)
 - Graphical model approach for estimation with linear mixing
 - Challenges with arbitrary matrices
- Max-Sum GAMP: Connections to ADMM
- Sum-Product GAMP: Free energy optimization
- Convergence in AWGN models
- Numerical examples
 - Neural connectivity detection

Conclusions

- AMP is a powerful algorithm for certain random matrices
- Reliable extension to arbitrary matrices remains main outstanding obstacle to widespread use
 - Conventional optimization methods likely to remain dominant
- This talk:
 - Optimization interpretation of GAMP
 - Applies to max-sum and sum-product with arbitrary matrices
 - Characterizes fixed points
 - Convergence understood for linear AWGN models
- Still many questions...

