Resonant Deloc. on the Complete Graph

Michael Aizenman

Princeton University

Cargese, 4 Sept. 2014

Based on:

M.A. - S. Warzel: "Extended states ..." / "Resonant delocalization for random Schrödinger operators on tree graphs", (2011,2013)

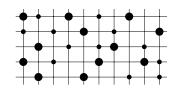
M.A. - M. Shamis - S. Warzel: "Partial delocalization on the complete graph" (2014)

Random Schrödinger operators - the question of spectral characteristics

Single quantum particle on regular graph \mathbb{G} (e.g. \mathbb{Z}^d)

$$H(\omega) := -\Delta + \lambda V(x; \omega)$$

on $\ell^2(\mathbb{G})$ (Anderson '58, Mott - Twose '61,...)



- discrete Laplacian: $(\Delta \psi)(x) := \sum_{\text{dist}(x,y)=1} \psi(y) n(x)\psi(x)$
- ▶ Disorder parameter: $\lambda > 0$
- ▶ $V(x; \cdot)$, $x \in \mathbb{G}$, i.i.d. rand. var., e.g. abs. cont distr. $\mathbb{P}(V(0) \in dv)$

Of particular interest: Localization and delocalization under disorder

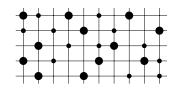
Random Schrödinger operators - the question of spectral characteristics

Single quantum particle on regular graph \mathbb{G} (e.g. \mathbb{Z}^d)

$$H(\omega) := -\Delta + \lambda V(x; \omega)$$

on $\ell^2(\mathbb{G})$

(Anderson '58, Mott - Twose '61,...)



- discrete Laplacian: $(\Delta \psi)(x) := \sum_{\text{dist}(x,y)=1} \psi(y) n(x)\psi(x)$
- ▶ Disorder parameter: $\lambda > 0$
- ▶ $V(x; \cdot)$, $x \in \mathbb{G}$, i.i.d. rand. var., e.g. abs. cont distr. $\mathbb{P}(V(0) \in dv)$

Of particular interest: Localization and delocalization under disorder

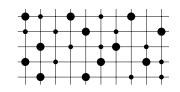
("steelpan", Trinidad and Tobago)

Random Schrödinger operators - the question of spectral characteristics

Single quantum particle on regular graph \mathbb{G} (e.g. \mathbb{Z}^d)

$$H(\omega) := -\Delta + \lambda V(x; \omega)$$

on $\ell^2(\mathbb{G})$ (Anderson '58, Mott - Twose '61,...)



- discrete Laplacian: $(\Delta \psi)(x) := \sum_{\text{dist}(x,y)=1} \psi(y) n(x)\psi(x)$
- ▶ Disorder parameter: $\lambda > 0$
- ▶ $V(x; \cdot)$, $x \in \mathbb{G}$, i.i.d. rand. var., e.g. abs. cont distr. $\mathbb{P}(V(0) \in dv)$

Of particular interest: Localization and delocalization under disorder

("steelpan", Trinidad and Tobago)

Currently, <u>delocalization</u> remains less understood.

Possible mechanisms:

- continuity (?) (trees: [K'96, ASiW'06])
- quantum diffusion (?) [EY'00]
- resonant delocalization

Eigenfunction hybridization (tunneling amplitude vs. energy gaps)

Reminder from QM 101: Two-level system $H = \begin{pmatrix} E_1 & \tau \\ \tau^* & E_2 \end{pmatrix}$

Energy gap: $\Delta E := E_1 - E_2$ Tunneling amplitude: τ .

▶ Case $|\Delta E| \gg |\tau|$: Localization

$$\psi_1 \approx (1,0), \qquad \psi_2 \approx (0,1).$$

• Case $|\Delta E| \ll |\tau|$: Hybridized eigenfunctions

$$\psi_1 \approx \frac{1}{\sqrt{2}}(1, 1), \qquad \psi_2 \approx \frac{1}{\sqrt{2}}(1, -1).$$

Heuristic explanation of the abs. cont. spectrum on tree graphs: (A-W '11)

Tunnelling amp. for states with energy E at distances R: $e^{-L_{\lambda}(E)R}$ (tvp.)

Since the volume grows exponentially fast as K^R , extended states will form

in spectral regimes with $L_{\lambda}(E) < \log K$.

$$L_{\lambda}(E) < \log K$$
.

PRL **106**: 136804 (2011) EPL 96: 37004 (2011)

The implications include a surprising correction of the standard picture of the phase diagram: absence of a mobility edge for the Anderson Hamiltonian on tree graphs at weak disorder (Aiz-Warzel, EPL 2011).] 4 D > 4 P > 4 B > 4 B > B 9 9 0

Quasimodes & their tunnelling amplitude

Definition:

1. A **quasi-mode** (qm) with discrepancy d for a self-adjoint operator H is a pair (E, ψ) s.t.

$$\|(H-E)\psi\| \leq d\|\psi\|.$$

2. The pairwise **tunnelling amplitude**, among orthogonal qm's of energy close to E may be defined as $\tau_{jk}(E)$ in

$$P_{jk}(H-E)^{-1}P_{jk} = \begin{bmatrix} e_j + \sigma_{jj}(E) & \tau_{jk}(E) \\ \tau_{kj}(E) & e_k + \sigma_{kk}(E) \end{bmatrix}^{-1}.$$

(the "Schur complement" representation).

Seems reasonable to expect:

If the typical **gap size** for quasi-modes is $\Delta(E)$, the condition for **resonant delocalization** at energies $E + \Theta(\Delta E)$ is:

$$\Delta(E) \leq | au_{jk}(E)|$$
.

Question:

how does that work in case of many co-resonating modes?

Example: Schrödinger operator on the complete graph (of *M* sites)

$$H_{M} = -|\varphi_{0}\rangle\langle\varphi_{0}| + \kappa_{M} V$$

with:

- $| \langle \varphi_0 | = (1,1,\ldots,1)/\sqrt{M} ,$
- $ightharpoonup V_1, V_2, \dots V_M$ iid standard Gaussian rv's, i.e.

$$\varrho(v) = \frac{1}{\sqrt{2\pi}}e^{-v^2/2},$$

 $\kappa_M := \lambda / \sqrt{2 \log M}.$

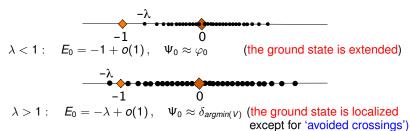
Remarks:

- ► Choice of (κ_M) motivated by: $\max\{V_1,...,V_M\} \stackrel{inProb}{=} \sqrt{2\log M} + o(1)$.
- The spectrum of H for $M \to \infty$: $\sigma(H_M) \longrightarrow [-\lambda, \lambda] \cup \{-1, 0\} \quad \text{(on the 'macroscopic scale')}.$
- Eigenvalues interlace with the values of K_M V
- Studied earlier by Bogachev and Molchanov ('89), and Ossipov ('13) both works focused on localization.

Two phase transitions for
$$H_M = -|\varphi_0\rangle\langle\varphi_0| + \frac{\lambda}{\sqrt{2\log M}} V$$

Quasi-modes: $|\varphi_0\rangle$ (extended), and $|\delta_i\rangle$ j=1,...,M (localized).

1. A transition at the spectral edge (1st-order), at $\lambda = 1$:



(Similar first order trans. in QREM and ... were studied [num. & rep.] by Jörg, Krzakala, Kurchan, Maggs '08, Jörg, Krzakala, Semerjian, Zamponi '10, ... More on the subject in the talks of Leticia Cugliandolo and Simone Warzel)

2. Emergence of a band of semi-delocalized states: of main interest here

at energies near
$$\boxed{E=-1}$$
, for $\boxed{\lambda>\sqrt{2}}$.

A similar band near E = 0 is found for all $\lambda > 0$.

Helpful tools: I. the characteristic equation

Proposition

The eigenvalues of H_M intertwine with the values of κV . The spectrum of H_M consists of the collection of energies E for which

$$F_M(E) := \frac{1}{M} \sum_{x=1}^M \frac{1}{\kappa_M V(x) - E} = 1,$$
 (1)

and the corresponding eigenfunctions are given by:

$$\psi_E(x) = \frac{Const.}{\kappa_M V(x) - E} \,. \tag{2}$$

Proof: "rank one" perturbation theory \Longrightarrow for any $z \in \mathbb{C} \setminus \mathbb{R}$:

$$\frac{1}{H_{M}-z} = \frac{1}{\kappa_{M}V-z} + [1-F_{M}(z)]^{-1} \frac{1}{\kappa_{M}V-z} |\varphi_{0}\rangle\langle\varphi_{0}| \frac{1}{\kappa_{M}V-z}, \quad (3)$$

In particular, $\left| \langle \varphi_0, (H_M - z)^{-1} \varphi_0 \rangle \right| = (F_M(z)^{-1} - 1)^{-1}$. The spectrum and eigenfunctions are given by the poles and residues of this "resolvent".

The scaling limit

Zooming onto scaling windows centered at a sequence of energies \mathcal{E}_M with:

$$\lim_{M\to\infty}\mathcal{E}_M \ = \ \mathcal{E}\in[-\lambda,\lambda], \quad \text{and} \qquad |\mathcal{E}_M-\mathcal{E}|\leq C/\ln M\,,$$

$$|\mathcal{E}_M - \mathcal{E}| \leq C/\ln M$$

denote

$$\boxed{u_{n,M} \;:=\; \frac{E_{n,M} - \mathcal{E}_M}{\Delta_M(\mathcal{E}_M)}} \;,$$

$$\omega_{n,M} := \frac{\kappa_M V_j - \mathcal{E}_M}{\Delta_M(\mathcal{E}_M)}.$$

rescaled eigenvalues

rescaled potential values

Questions of interest:

- 1. the nature of the limiting point process of the rescaled eigenvalues (including: extent of level repulsion (?), and relation to rescaled potential values)
- 2. the nature of the corresponding eigenfunctions (extended versus localized, and possible meaning of these terms).

Results (informal summary)

Theorem 1 [Bands of partial delocalization (A., Shamis, Warzel)] If either

- $\mathcal{E} = 0, \lambda > 0;$ or
- $\blacktriangleright \ \mathcal{E} = -1, \ \text{and} \ \lambda > \sqrt{2}, \qquad \qquad (\searrow_{\mathcal{C}} \text{'s Hilbert transform})$

and additionally the lim exists: $\lim_{M\to\infty} M\Delta_M(\mathcal{E}) \left(1-\kappa_M^{-1}\,\overline{\varrho}\,(\mathcal{E}_M/\kappa_M)\right) =: \alpha$ then:

- I. the eigenvalues within the scaling window are *delocalized in* ℓ^1 *sense*, localized in ℓ^2 sense.
- II. the rescaled eigenvalue point process converges in distribution to the Šeba point process at level α [defined below].

Theorem 2 [A non-resonant delocalized state for $\lambda < \sqrt{2}$] For $\lambda < \sqrt{2}$, there is a sequence of energies satisfying $\lim_{M\to\infty} \mathcal{E}_M = -1$ such that within the scaling windows centered at \mathcal{E}_M :

- 1. There exists one eigenvalue for which the corresponding eigenfunction ψ_E is ℓ^2 -delocalized [...]
- 2. All other eigenfunctions in the scaling window are ℓ^2 -localized [...]

Elsewhere localization (Theorem 3 – not displayed here).

Key elements of the proof

Rank-one perturbation arguments yield the characteristic equation:

Eigenvalues:
$$\frac{1}{M} \sum_{n} \frac{1}{\kappa_M V_n - E} = 1 \quad (*)$$

Eigenvectors :
$$\psi_{j,E} = \frac{1}{\kappa_M V_i - E}$$
 up to normalization

▶ To study the scaling limit we distinguish between the head contribution in (*), $S_{M,\omega}(u)$, and the tail sum, transforming (*) into:

$$\boxed{S_{M,\omega}(u) = M\Delta_M(\mathcal{E}) - T_{M,\omega}(u)} := -R_{M,\omega}(u)$$

with

$$T_{M,\omega}(u) = \sum_{n} \frac{1[|\omega_n| \ge \ln M]}{\omega_{M,n} - u}$$

Prove & apply some general results concerning limits of random Pick functions (aka Herglotz - Nevanlinna functions). In particular: the scaling limit of a function such as $R_{M,\omega}(u)$ is either:

- i. constant ⇒ Šeba process & semi-delocalization,
- ii. singular $(+\infty)$ or $(-\infty) \Rightarrow$ localization, or
- iii. $singular with transition \Rightarrow localization + single deloc. state$

$$(\mathcal{E} = -1, \lambda \leq \sqrt{2})$$

Putting it all together (with details in appended slides)

1. Proofs of Theorems 1 - 3 (the spectral characteristics of $H_{M,\omega}$)

Recall: Eigenvalues:
$$\frac{1}{M} \sum_{n} \frac{1}{\kappa_M V_n - E} = 1$$
 (*)

Eigenvectors :
$$\psi_{j,E} = \frac{1}{\kappa_M V_i - E}$$
 up to normalization

distinguishing head $S_{M,\omega}(u)$ versus tail contributions, rewrite (*) as:

$$\boxed{S_{M,\omega}(u) = M\Delta_M(\mathcal{E}) - T_{M,\omega}(u)}$$

with $S_{M,\omega}(u) = \sum_n \frac{\mathbb{I}[|\omega_n| \leq \ln M]}{\omega_{M,n} - u}$ and $T_{M,\omega}(u) = \sum_n \frac{\mathbb{I}[|\omega_n| \geq \ln M]}{\omega_{M,n} - u}$, apply the general results on such functions.

- The heuristic criterion for resonant delocalization "checks out" yields the correct answer.
- 3. The localization criteria require some discussion (ℓ^2 versus ℓ^1).
- 4. Comment on operators with many mixing modes (crossover to random matrix asymptotics)

Thank you for your attention

Alternatively - some further details are given below

Random Pick functions, and some facts about their limits

Pick class functions(*): functions $F : \mathbb{C}_+ \mapsto \mathbb{C}_+$ which are:

i) analytic in \mathbb{C}_+ , and ii) satisfy $\operatorname{Im} F(x+iy) \geq 0$ for y>0.

Such functions have the Herglotz representation:

$$F(z) = a_F z + b_F + \int \left(\frac{1}{x-z} - \frac{x}{1+x^2}\right) \mu_F(dx)$$

P(a,b) - the subclass of Pick functions which are analytic in $(a,b)\subset\mathbb{R}$. Pick, Löwner, Herglotz, Nevanlinna

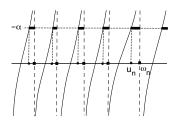
Random Pick functions:

 $\mu_F(dx)$ a random measure, e.g. point process, (a_F, b_F) may also be random.

The charact. eq. $S_{M,\omega}(u) = -R_{M,\omega}(u)$ relates two rather different examples:

- 1. $S_{M,\omega}(u)$: its spectral measure μ_S converges to a Poisson process
- 2. $R_{M,\omega}(u)$: is in $P(-L_M, L_M)$ for $L_M = \ln M \to \infty$

The "oscillatory part"



Prop 1: For any Pick function $S_{\omega}(x)$ which is stationary and ergodic under shifts, and of purely singular spectral measure, the value of $S_{\omega}(x)$ has the general Cauchy distribution ($\stackrel{\mathcal{D}}{=} aY + b$; Y Cauchy RV)

(See A.-Warzel '13, may have been know to Methuselah.)

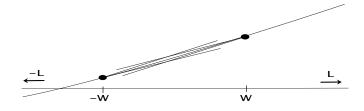
Among the interesting examples:

- 1. (periodic) the function $S_{\theta}(u) = \cot(u + \theta)$
- 2. (random, no level repulsion) the Poisson-Stieltjes function $S_{\omega}(u)$
- 3. (random, with level repulsion) the Wigner matrix resolvent $S(u) = \langle 0 | \frac{\Delta_N(\mathcal{E})}{H_{u,N} (\mathcal{E} + u\Delta_N(\mathcal{E}))} | 0 \rangle$

Linearity away from the spectrum

<u>Lemma:</u> Let F(z) be a function in P(-L, L). Then $\forall W < L/3$ and $u, u_0, u_1 \in [-W, W]$,:

$$\left|\frac{F(u)-F(u_0)}{u-u_0}-\frac{F(u_1)-F(u_0)}{u_1-u_0}\right| \leq 2\frac{\frac{W}{L}}{L}\frac{F(u_1)-F(u_0)}{u_1-u_0}$$



Prop. 2:(A-S-W) Functions $F_M \in P(-L_M, L_M)$ with $L_M \to \infty$ can only have one of the following 3 limits

- i. F(z) = az + b,
- ii. singular: $(+\infty)$ or $(+\infty)$,
- iii. singular with transition

and for (i) & (ii) convergence at two points suffices

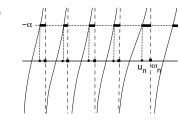
The Šeba process

Let ω be the Poisson process of constant intensity 1. The corresponding Stieltjes-Poisson random function

$$S_{\omega}(u) := \lim_{w \to \infty} \sum_{n} \frac{1[|\omega_{n}| \le w]}{\omega_{n} - u}$$
 (lim exists a.s.)

For specified $\alpha \in [-\infty, \infty]$, denote by $\{u_{n,\omega}(\alpha)\}$ the solutions of:

$$S_{\omega}(u) = \alpha$$



Definition

We refer to the intertwined point process ($\{u_n, \omega_n\}$) as the Šeba point processes at level α .

Remarks:

- ▶ Limiting cases $\alpha = \pm \infty$: Poisson process
- Intermediate statistics with some level repulsion

Šeba 1990, Albeverio-Šeba 1991 Bogomolny/Gerland/Schmit 2001, Keating-Marklof-Winn 2003 Turn back to Page 12.