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Random Schrödinger operators - the question of spectral characteristics
Single quantum particle on
regular graph G (e.g. Zd )

H(ω) := −∆ + λV (x ;ω)

on `2(G)
(Anderson ’58, Mott - Twose ’61,...)

I discrete Laplacian: (∆ψ)(x) :=
∑

dist(x,y)=1 ψ(y)− n(x)ψ(x)

I Disorder parameter: λ > 0
I V (x ; ·), x ∈ G, i.i.d. rand. var., e.g. abs. cont distr. P(V (0) ∈ dv)

Of particular interest: Localization and delocalization under disorder

(“steelpan”, Trinidad and Tobago)

Currently, delocalization remains
less understood.

Possible mechanisms:
I continuity (?) (trees: [K’96, ASiW’06])

I quantum diffusion (?) [EY’00]

I resonant delocalization
[AW’11, AShW ’14]
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Eigenfunction hybridization (tunneling amplitude vs. energy gaps)

Reminder from QM 101: Two-level system H =

(
E1 τ
τ∗ E2

)
Energy gap: ∆E := E1 − E2 Tunneling amplitude: τ .

I Case |∆E | � |τ |: Localization

ψ1 ≈ (1, 0) , ψ2 ≈ (0, 1) .

I Case |∆E | � |τ |: Hybridized eigenfunctions

ψ1 ≈
1√
2

(1, 1) , ψ2 ≈
1√
2

(1, −1) .

Heuristic explanation of the abs. cont. spectrum on tree graphs: (A-W ‘11)

Tunnelling amp. for states with energy E at distances R: e−Lλ(E) R (typ.)

Since the volume grows exponentially fast as K R , extended states will form

in spectral regimes with Lλ(E) < log K .

M.A., S. Warzel, JEMS 15: 1167-1222 (2013), PRL 106: 136804 (2011)
EPL 96: 37004 (2011)

[The implications include a surprising correction of the standard picture of the phase
diagram: absence of a mobility edge for the Anderson Hamiltonian on tree graphs at
weak disorder (Aiz-Warzel, EPL 2011).]
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Quasimodes & their tunnelling amplitude
Definition:

1. A quasi-mode (qm) with discrepancy d for a self-adjoint operator H
is a pair (E , ψ) s.t.

‖(H − E)ψ‖ ≤ d‖ψ‖ .

2. The pairwise tunnelling amplitude, among orthogonal qm’s
of energy close to E may be defined as τjk (E) in

Pjk (H − E)−1Pjk =

[
ej + σjj (E) τjk (E)
τkj (E) ek + σkk (E)

]−1

.

(the “Schur complement” representation).

Seems reasonable to expect:

If the typical gap size for quasi-modes is ∆(E), the condition for resonant
delocalization at energies E + Θ(∆E) is:

∆(E) ≤ |τjk (E)| .

Question:
how does that work in case of many co-resonating modes?
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Example: Schrödinger operator on the complete graph (of M sites)

HM = −|ϕ0〉〈ϕ0|+ κM V

with:
I 〈ϕ0| = (1, 1, . . . , 1)/

√
M ,

I V1,V2, . . .VM iid standard Gaussian rv’s, i.e.

%(v) =
1√
2π

e−v2/2,

I κM := λ
/√

2 log M.

Remarks:

I Choice of (κM ) motivated by: max{V1, ...,VM}
inProb

=
√

2 log M + o(1) .

I The spectrum of H for M →∞ :

σ(HM ) −→ [−λ, λ] ∪ {−1, 0} (on the ‘macroscopic scale’) .

I Eigenvalues interlace with the values of KMV
I Studied earlier by Bogachev and Molchanov (‘89), and Ossipov (‘13) -

both works focused on localization.
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Two phase transitions for HM = −|ϕ0〉〈ϕ0|+ λ√
2 log M

V

Quasi-modes: |ϕ0〉 (extended), and |δj〉 j = 1, ...,M (localized).
1. A transition at the spectral edge (1st -order), at λ = 1 :

-1 0

-λ

λ < 1 : E0 = −1 + o(1) , Ψ0 ≈ ϕ0 (the ground state is extended)

-1 0

-λ

λ > 1 : E0 = −λ+ o(1) , Ψ0 ≈ δargmin(V ) (the ground state is localized
except for ‘avoided crossings’)

(Similar first order trans. in QREM and ... were studied [num. & rep.] by
Jörg, Krzakala, Kurchan, Maggs ’08, Jörg, Krzakala, Semerjian, Zamponi ’10,
... More on the subject in the talks of Leticia Cugliandolo and Simone Warzel)

2. Emergence of a band of semi-delocalized states: of main interest here

at energies near E = −1 , for λ >
√

2 .

A similar band near E = 0 is found for all λ > 0 .
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Helpful tools: I. the characteristic equation

Proposition
The eigenvalues of HM intertwine with the values of κV .
The spectrum of HM consists of the collection of energies E for which

FM (E) :=
1
M

M∑
x=1

1
κMV (x)− E

= 1 , (1)

and the corresponding eigenfunctions are given by:

ψE (x) =
Const .

κMV (x)− E
. (2)

Proof: “rank one” perturbation theory =⇒ for any z ∈ C\R:

1
HM − z

=
1

κMV − z
+ [1− FM (z)]−1 1

κMV − z
|ϕ0〉〈ϕ0|

1
κMV − z

, (3)

In particular, 〈ϕ0 , (HM − z)−1ϕ0〉 = (FM (z)−1 − 1)−1 . The spectrum and
eigenfunctions are given by the poles and residues of this “resolvent”.
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The scaling limit

Zooming onto scaling windows centered at a sequence of energies EM with:

lim
M→∞

EM = E ∈ [−λ, λ], and |EM − E| ≤ C/ ln M ,

denote un,M :=
En,M − EM

∆M (EM )
, ωn,M :=

κMVj − EM

∆M (EM )
.

rescaled eigenvalues rescaled potential values

Questions of interest:

1. the nature of the limiting point process of the rescaled eigenvalues
(including: extent of level repulsion (?), and relation to rescaled
potential values)

2. the nature of the corresponding eigenfunctions (extended versus
localized, and possible meaning of these terms).
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Results (informal summary)

Theorem 1 [Bands of partial delocalization (A., Shamis, Warzel)]
If either

I E = 0, λ > 0; or
I E = −1, and λ >

√
2, ( ↘%’s Hilbert transform)

and additionally the lim exists: lim
M→∞

M∆M (E)
(

1− κ−1
M % (EM/κM )

)
=: α

then:

I. the eigenvalues within the scaling window are delocalized in `1 sense,
localized in `2 sense.

II. the rescaled eigenvalue point process converges in distribution
to the Šeba point process at level α [defined below].

Theorem 2 [A non-resonant delocalized state for λ <
√

2]
For λ <

√
2, there is a sequence of energies satisfying limM→∞ EM = −1

such that within the scaling windows centered at EM :
1. There exists one eigenvalue for which the corresponding eigenfunction

ψE is `2-delocalized [. . . ]
2. All other eigenfunctions in the scaling window are `2-localized [. . . ]

Elsewhere localization (Theorem 3 – not displayed here).
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Key elements of the proof
I Rank-one perturbation arguments yield the characteristic equation:

Eigenvalues :
1
M

∑
n

1
κMVn − E

= 1 (∗)

Eigenvectors : ψj,E =
1

κMVj − E
up to normalization

I To study the scaling limit we distinguish between the head contribution
in (*), SM,ω(u), and the tail sum, transforming (*) into:

SM,ω(u) = M∆M (E)− TM,ω(u) := −RM,ω(u)

with
TM,ω(u) =

∑
n

1[|ωn| ≥ ln M]

ωM,n − u

I Prove & apply some general results concerning limits of
random Pick functions (aka Herglotz - Nevanlinna functions).
In particular: the scaling limit of a function such as RM,ω(u) is either:

i. constant⇒ Šeba process & semi-delocalization,
ii. singular (+∞) or (−∞)⇒ localization, or
iii. singular with transition⇒ localization + single deloc. state

(E = −1, λ <
√

2)
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Putting it all together (with details in appended slides)

1. Proofs of Theorems 1 - 3 (the spectral characteristics of HM,ω)

Recall: Eigenvalues :
1
M

∑
n

1
κMVn − E

= 1 (∗)

Eigenvectors : ψj,E =
1

κMVj − E
up to normalization

distinguishing head SM,ω(u) versus tail contributions, rewrite (*) as:

SM,ω(u) = M∆M (E)− TM,ω(u)

with SM,ω(u) =
∑

n
1[|ωn|≤ln M]
ωM,n−u and TM,ω(u) =

∑
n

1[|ωn|≥ln M]
ωM,n−u ,

apply the general results on such functions.

2. The heuristic criterion for resonant delocalization “checks out”
yields the correct answer.

3. The localization criteria require some discussion (`2 versus `1).

4. Comment on operators with many mixing modes
(crossover to random matrix asymptotics)
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Thank you for your attention

Alternatively - some further details are given below
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Random Pick functions, and some facts about their limits

Pick class functions(∗): functions F : C+ 7→ C+ which are:
i) analytic in C+, and ii) satisfy Im F (x + iy) ≥ 0 for y > 0.

Such functions have the Herglotz representation:

F (z) = aF z + bF +

∫ (
1

x − z
− x

1 + x2

)
µF (dx)

P(a, b) - the subclass of Pick functions which are analytic in (a, b) ⊂ R.
Pick, Löwner, Herglotz, Nevanlinna

Random Pick functions:
µF (dx) a random measure, e.g. point process, (aF , bF ) may also be random.

The charact. eq. SM,ω(u) = −RM,ω(u) relates two rather different examples:

1. SM,ω(u): its spectral measure µS converges to a Poisson process

2. RM,ω(u): is in P(−LM , LM ) for LM = ln M →∞
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The “oscillatory part”

-α

ωnun

Prop 1: For any Pick function Sω(x) which is stationary and ergodic under
shifts, and of purely singular spectral measure, the value of Sω(x) has the
general Cauchy distribution (D= aY + b; Y Cauchy RV)

(See A.-Warzel ‘13, may have been know to Methuselah.)

Among the interesting examples:

1. (periodic) the function Sθ(u) = cot(u + θ)

2. (random, no level repulsion) the Poisson-Stieltjes function Sω(u)

3. (random, with level repulsion) the Wigner matrix resolvent
S(u) = 〈0| ∆N (E)

Hω,N−(E+u∆N (E))
|0〉
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Linearity away from the spectrum

Lemma: Let F (z) be a function in P(−L, L). Then ∀W < L/3
and u, u0, u1 ∈ [−W ,W ],:∣∣∣∣F (u)− F (u0)

u − u0
− F (u1)− F (u0)

u1 − u0

∣∣∣∣ ≤ 2
W
L

F (u1)− F (u0)

u1 − u0

W-W

-L L

Prop. 2:(A-S-W) Functions FM ∈ P(−LM , LM ) with LM →∞
can only have one of the following 3 limits

i. F (z) = az + b,
ii. singular: (+∞) or (+∞) ,
iii. singular with transition

and for (i) & (ii) convergence at two points suffices
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The Šeba process

Let ω be the Poisson process of constant intensity 1.
The corresponding Stieltjes-Poisson random function

Sω(u) := lim
w→∞

∑
n

1[|ωn| ≤ w ]

ωn − u
(lim exists a.s.)

For specified α ∈ [−∞,∞], denote by {un,ω(α)}
the solutions of:

Sω(u) = α

Definition
We refer to the intertwined point process ({un, ωn}}
as the Šeba point processes at level α.

-α

ωnun

Remarks:
I Limiting cases α = ±∞: Poisson process
I Intermediate statistics with some level repulsion

Šeba 1990, Albeverio-Šeba 1991
Bogomolny/Gerland/Schmit 2001, Keating-Marklof-Winn 2003
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Turn back to Page 12.
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