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Random Schrddinger operators - the question of spectral characteristics
Single quantum particle on

regular graph G (e.g. Z9) f Y i ’ L

\ H(w) = —A + A V(x; w)\ PS

on (G) ? FF

I I
(Anderson ’58, Mott - Twose ’61,...)

> discrete Laplacian:  (Ay)(X) := > gisyx,y)=1 (¥) — n(x)1(X)
> Disorder parameter: X\ >0
> V(x;:), x € G, iid.rand. var, e.g.abs. contdistr. P(V(0) € dv)

Of particular interest: Localization and delocalization under disorder
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Random Schrddinger operators - the question of spectral characteristics

Single quantum particle on
regular graph G (e.g. Z9) f *| y S

\ H(w) = —A + A V(x; w)\

on (G) ° T T
(Anderson ’58, Mott - Twose ’61,...)
> discrete Laplacian:  (Ay)(X) := > gisyx,y)=1 (¥) — n(x)1(X)

> Disorder parameter: A >0
> V(x;:), x € G, iid.rand. var, e.g.abs. contdistr. P(V(0) € dv)

Of particular interest: Localization and delocalization under disorder
Currently, delocalization remains
less understood.

Possible mechanisms:

> continuity (?) (rees: [K'96, ASIW'06])

» quantum diffusion (?) [EY'00]

» resonant delocalization

[AW'11, AShW *14]
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Eigenfunction hybridization  (tunneling amplitude vs. energy gaps)

Reminder from QM 101: Two-level system H= ( fl 71;: )
2

Energygap: AE=E -E Tunneling amplitude: 7.
> Case |AE|> |7|: Localization
¢1 ~ (1a 0) ’ d@ ~ (0’ 1)'
> Case |AE| < |7 Hybridized eigenfunctions
1

1
d” ~ :752(15 1) ) d@ ~ :75 (17 __1)

Heuristic explanation of the abs. cont. spectrum on tree graphs: (A-W ‘11)

Tunnelling amp. for states with energy E at distances R: e~ 25 F (typ))
Since the volume grows exponentially fast as K¥, extended states will form

in spectral regimes with Lyz(E) < log K |.

M.A., S. Warzel, JEMS 15: 1167-1222 (2013), PRL 106: 136804 (2011)
EPL 96: 37004 (2011)

[The implications include a surprising correction of the standard picture of the phase
diagram: absence of a mobility edge for the Anderson Hamiltonian on tree graphs at
weak disorder (Aiz-Warzel, EPL 2011).]
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Quasimodes & their tunnelling amplitude
Definition:

1. A quasi-mode (gm) with discrepancy d for a self-adjoint operator H
is a pair (E,v) s.t.
I(H = E)y[l < d|[¢]l.

2. The pairwise tunnelling amplitude, among orthogonal gm’s

of energy close to E may be defined as in

4o T -
/%k(HfE)*"%k:[e/;(é()E) ekff(kak)(E)} |

(the “Schur complement” representation).
Seems reasonable to expect:

If the typical gap size for quasi-modes is A(E), the condition for resonant
delocalization at energies E + ©(AE) is:

|A(E) < ()]

Question:
how does that work in case of many co-resonating modes?
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Example: Schrédinger operator on the complete graph (of M sites)

| Hu = —lpo) (ool + i V |

with:
> (o] =(1,1,...,1)/VYM,

> Vi, Vo, ...V iid standard Gaussian rv’s, i.e.

1
o(v) = ——e "2,

Var
> Ky = )\/\/ZIOQM.

Remarks:

inProb

v

Choice of (ku) motivated by: ‘ max{ Vs, ..., Vu} 2logM + o(1). ‘

The spectrum of H for :

o(Hu) — [\, A]U{—1,0} (on the ‘macroscopic scale’).

v

v

Eigenvalues interlace with the values of Ky V

Studied earlier by Bogachev and Molchanov (‘89), and Ossipov (‘13) -
both works focused on localization.

v
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Two phase transitions for Hu = —|o) (w0 + \/ﬁ %

Quasi-modes: |¢o) (extended), and|d;) j=1,...,M (localized).
1. A transition at the spectral edge (15-order), at| A =1 |

-\
o o-serssmncen .
-1 0
A<1: Eg=-140(1), Wo= o (the ground state is extended)
-\
——0-O0-s-00se0esses3® e oo
-1 0

A>1: Ey=-X+0(1), Vo~ dagminvy (the ground state is localized
except for ‘avoided crossings’)

(Similar first order trans. in QREM and ... were studied [num. & rep.] by
Jorg, Krzakala, Kurchan, Maggs '08, Jorg, Krzakala, Semerjian, Zamponi '10,
... More on the subject in the talks of Leticia Cugliandolo and Simone Warzel)

2. Emergence of a band of semi-delocalized states: of main interest here

at energies near , for .
A similar band near is found for all .
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Helpful tools: 1. the characteristic equation

Proposition
The eigenvalues of Hy intertwine with the values of k V.
The spectrum of Hy consists of the collection of energies E for which

1 < 1
Fu(E) = M;m =1, (1)

and the corresponding eigenfunctions are given by:

Const.

Ve = Vo £

(@)

Proof: “rank one” perturbation theory = for any z € C\R:

1 _ 1 1
HM—Z o KMV—Z +[1 _FM(Z)]

1
oV —z l0) (ol V2’ 3)

In particular, | (o, (Hu —2) "wo) = (Fu(z)™"=1)"". ‘The spectrum and
eigenfunctions are given by the poles and residues of this “resolvent”. O
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The scaling limit

Zooming onto scaling windows centered at a sequence of energies Ey with:

Jim &y = £€[-AN, and  |En—E| < C/InM,
— 00

Enm—Eum kmVi —Em
denote Uy = — = —_—
n,M AM(SM) 5 Wn,M AM(gM)
rescaled eigenvalues rescaled potential values

Questions of interest:

1. the nature of the limiting point process of the rescaled eigenvalues
(including: extent of level repulsion (?), and relation to rescaled
potential values)

2. the nature of the corresponding eigenfunctions (extended versus
localized, and possible meaning of these terms).
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Results (informal summary)

Theorem 1 [Bands of partial delocalization (A., Shamis, Warzel)]

If either

» £=0,A>0; or

> £=—1,and A > V2, ( \uo's Hilbert transform)
and additionally the lim exists: ~ lim MAw(E) (1~ ry' @ (Eu/wm)) = a
then:

I. the eigenvalues within the scaling window are delocalized in (' sense,
localized in ¢2 sense.

Il the rescaled eigenvalue point process converges in distribution
to the Seba point process at level « [defined below].

Theorem 2 [A non-resonant delocalized state for A < v/2]
For A < /2, there is a sequence of energies satisfying limy_ oo Ey = —1
such that within the scaling windows centered at Ey:
1. There exists one eigenvalue for which the corresponding eigenfunction
e is £*-delocalized [. . .]

2. All other eigenfunctions in the scaling window are ¢2-localized [. .. ]

Elsewhere localization (Theorem 3 — not displayed here).
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Key elements of the proof

» Rank-one perturbation arguments yield the characteristic equation:
1 1
Ei lues : — — =1
igenvalues : 4 ; Vo E (%)

Eigenvectors : ;g = up to normalization

1
kmVi— E

» To study the scaling limit we distinguish between the head contribution
in (*), Sm...(u), and the tail sum, transforming (*) into:

]sM,w(u) = MAW(E) — T.o(u) \ ‘= —Ru..(U)

with
Tuo(u) = S Menl 20 M)

- wm,n—u

> Prove & apply some general results concerning limits of
random Pick functions (aka Herglotz - Nevanlinna functions).
In particular: the scaling limit of a function such as Ru..,(u) is either:
i. constant = Seba process & semi-delocalization,
ii. singular (+o0) or (—oo) = localization, or
iii. singular with transition = localization + single deloc. state

E=—-1,2<2)
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Putting it all together (with details in appended slides)

1. Proofs of Theorems 1 - 3 (the spectral characteristics of Hu,.,)

i o4 1 B
Recall: Eigenvalues : Y ; m =1 (%)

1
———— up to normalization
imVi—E P

distinguishing head Su,.,(u) versus tail contributions, rewrite (*) as:

Eigenvectors : g =

[Su.0(t) = MAW(E) — Twu(v) |

with  Sy.(u) = 3, Ulwn|<InM] 5 10g Tuw(u) = 3, 1[|wn\2|nM],

wWp,n—Uu WM,n—U

apply the general results on such functions.

2. The heuristic criterion for resonant delocalization “checks out”
yields the correct answer.

3. The localization criteria require some discussion (¢2 versus ¢').

4. Comment on operators with many mixing modes
(crossover to random matrix asymptotics)
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Thank you for your attention

Alternatively - some further details are given below
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Random Pick functions, and some facts about their limits

Pick class functions(*): functions F : C+ — C4 which are:
i) analyticin C, and i) satisfy Im F(x +iy) > 0fory > 0.

Such functions have the Herglotz representation:

F(z) = apz+bF+/( 1 X )#F(dx)

X—z 1+x2

P(a, b) - the subclass of Pick functions which are analytic in (a, b) C R.
Pick, Léwner, Herglotz, Nevanlinna

Random Pick functions:
ur(dx) arandom measure, e.g. point process, (ar, br) may also be random.

The charact. eq. ’ S, (U) = —Ru,.(U) ‘ relates two rather different examples:

1. Swm,.(u): its spectral measure us converges to a Poisson process
2. Ru,w(u):isin P(—Ly, Ly) for Ly =InM — o
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The “oscillatory part”

Prop 1: For any Pick function S.,(x) which is stationary and ergodic under
shifts, and of purely singular spectral measure, the value of S.,(x) has the

general Cauchy distribution (2 aY + b; Y Cauchy RV)

(See A.-Warzel ‘13, may have been know to Methuselah.)

Among the interesting examples:
1. (periodic) the function Sp(u) = cot(u + 6)
2. (random, no level repulsion) the Poisson-Stieltjes function S, (u)

3. (random, with level repulsion) the Wigner matrix resolvent
— AN(E)
S(u) = (0] HW,N—(éVJruAN(E)) 10)
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Linearity away from the spectrum
Lemma: Let F(z) be a function in P(—L,L). ThenV W < L/3
and u, up, uy € [-W, W],:

F(u) — F(w)  F(u1) — F(w) W F(ur) — F(wo)

< 2
u— U Uy — U L Uy — U
—L L
-— —_—
1 T
—-W w

Prop. 2:(A-S-W) Functions Fu € P(—Lu, Ly) with Ly — oo
can only have one of the following 3 limits

i. F(z) = az+ b,

ii. singular: (+00) or (4+00) ,

iii. singular with transition

and for (i) & (ii) convergence at two points suffices
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The Seba process

Let w be the Poisson process of constant intensity 1.
The corresponding Stieltjes-Poisson random function

Su(u) == lim E:Jﬂfﬂ;;jd

(lim exists a.s.)
w— oo - wp—Uu

For specified a € [—o0, 0], denote by {un,.(a)}

the solutions of:
So(u) =«

Definition
We refer to the intertwined point process ({un, wn}}
as the Seba point processes at level a.
Remarks:
> Limiting cases a = too: Poisson process
> Intermediate statistics with some level repulsion
Seba 1990, Albeverio-Seba 1991
Bogomolny/Gerland/Schmit 2001, Keating-Marklof-Winn 2003
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Turn back to Page 12.
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