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Flocks of starlings vs Physics
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o DYNAMICS ?

Synchronized and rapid change of direction of the whole group — collective decision making ?
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Questions about collective turns

o lIs the turn instantaneous for all birds in the flock?

+ who starts the turn first, who second...?

o Where does the the turning decision start?

+ spatially localized or extended origin?

o How does the information spread across the flock?

+ what kind of propagation (dispersion) law?



Experiments in Rome

GOAL: © Turning flocks of starlings above a roosting place in Rome

o 3D trajectories of individual birds for the entire duration of a turning
event (>5s)
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Experimental setup

. IDT-Red Lake M5

-4 Megapixel
trifocal . monochromatic
system -170 fps

. Schneider lenses




Tracking




Tracking problems - blobs
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And finally... individual 3D trajectories

o 12 turning flocks of 50 to 600 starlings above a roosting place in Rome

o 3D trajectories of individual birds for the entire duration of a turning event (>5s)
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Mutual time delays

bird i turns before bird j

—
o

(0¢]

Acceleration (ms_z)

find the delay T; that maximizes the overlap between the two accelerations



Rank birds according to their
mutual delays T;

Birds ranking

0 ms — first bird to turn

35 ms
44 ms
50 ms
52 ms
54 ms
63 ms
64 ms

68 ms

flock_20110208_ACQ3_N176



Ranking curve
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Ranking curve
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‘nucleus’ = first 5 birds in the rank

1 0ms

2 35ms
3 44 ms
4 50 ms
5 52 ms
6 54 ms
7 63 ms
8 64 ms
9 68 ms
10 70 ms
11 71 ms
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Where the turn starts?

x d
4
’
’
.
’
4

first birds

o the turn starts on the side, not at the front
o spatial size of the nucleus d does not scale with L
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the turn starts localized and then it
propagates across the flock
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Ranking and propagation in space

if the turn starts localized then:

10

11

0 ms

35ms

44 ms

50 ms

52 ms

54 ms

63 ms

64 ms

68 ms

70 ms

71 ms

rank = (density p ) x (distance traveled by the turn x) 3

O rank:1
@ rank: 2-8

@ rank:9-38




Linear propagation (dispersion law) of the turn

<— finite size — boundary effects

x=c,t
A

speed of propagation of the |

turn across the flock
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Acceleration a.

15

Very weak attenuation — no damping

| —@— first ranked birds

—o—middle ranked birds

| —0—last ranked birds
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Distance x (m)
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Experimental results to be explained

o Linear (sound-like) propagation of the turn

These are orientation waves, not density waves

o Very weak attenuation of the turning signal — no damping

o Variability of the speed of propagation ¢, (20-40 ms™)

Not explained by the difference in density of the flocks, i.e.
not a standard sound wave

Typical velocity of a bird/flock is 10 ms™
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Do current theories of collective motion account for such an
efficient transport of information ?



Standard theory of flocking
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typical flocking model
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o Planar order parameter: @, V.
4—:
Vi +iv; =ve'” 4
flock velocity

o High polarization (low T) — spin wave expansion:
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What is wrong?

1) Missing conservation law

Rotational symmetry of the Hamiltonian v, = ve'' ¢ =@ +do
(all flight directions are equivalent)

Conservation law Osz +§.jz —0 Which affects the dynamics !
t
2) No inertia
op 21 2 )
o Standard theory: — =4 @ o Real bird:

ot

Bird can turn instantaneously ! To change direction, the bird has some

constraints: mass, size, wings, etc.

time t

time t+dt

Paradox!




New (superfluid) theory of flocking
o fd3 { pS[VCp(x t)] ps=a-J :rescilggp?illj]%nment

s.(x,t) = momentum conjugated to @(x,7), i.e. generator of the rotations around z-axis

X = generalized moment of inertia V=v_+ iv, = ve'? {v s }: — =iy
Sy ~
<477 i, v

R = const.

. Vv = const.

parallel paths trajectories equal radius trajectories




New (superfluid) theory of flocking
3 =a’J :r ignmen
o fd { 0, [V(p(x t)] ps=aJ : escilggp?liln% ent

s.(x,t) = momentum conjugated to @(x,7), i.e. generator of the rotations around z-axis

X = generalized moment of inertia V=v, +iv, = pe'® {v s }———iv
dp _oH _ 1
gt ds, x

Equations of motion:




New (superfluid) theory of flocking
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o os. A 5. 47 =0
Equations of motion: SH ot ¢
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It 5o PV with: j,=-p, V@

current of directional
information

072_@ 3 &qup _0 equation for the orientation
o’ x angle change during the turn



Predictions of the superfluid theory

&zqﬁ 2v2 equation for the orientation
-c;Vp=0 :
ot? angle change during the turn
X=cCt o linear propagation */
w=ck o no damping s/
_ a’J
Speed of propagation: ¢, =, |—
X
The alignment coupling J has been related to the polarization ® Bialek et al.
PNAS (2012)
1 I w7,
T ® = NET ® is experimentally accessible
. 1 the speed of propagation of the turn across the flock

1-D must be larger in more ordered flocks




Experimental test of the prediction
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Superfluid theory of flocking

= [ [Foto] + £

easy plane ferromagnet superfluid liquid He Il

MATSUBARA & MATSUDA 1956

Model F dynamics in the Halperin-Hohenberg classification | ¢ = ‘zp‘eifﬂ — Bose wave function

S, = Bose particle density

&2q0 ) 02V2¢ 0 4 cound x=c,t o linear dispersion law «
2 S -
ot ®=ck  nodamping v

We do not have density waves (15t sound), but the orientation waves (2"9 sound)!

¢, dependson: <+ flocks: polarization
+ superfluid He Il: temperature



Collective turns - conclusions

o Turns start localized, then spread through the flock fast and accurate

+ linear propagation of orientational information, no damping

o New superfluid theory for turns

+ includes conservation laws/symmetries and inertia

o High order in the group grants a more efficient propagation of information

+ why natural groups are so polarized?

polarization around 0.98



Why natural groups are so polarized?

The group is fragile

during the decision 2
—> >
—>
—>
S —>
—>
—>
—>
—>
-
fast information transfer keeps wavefront

group’s decoherence to a minimum

1 to achieve large speed of propagation of the
1-® information, strong polarization is necessary

The link between swift decision-making and large polarization may be the evolutionary
drive behind the strong ordering observed in many living groups



Based on

<% Information transfer and behavioural inertia in
starling flocks

Nature Physics, 2014 September issue

< Tracking in three dimensions via multi-path

branchin
g arXiv:1305.1495

< Flocking and turning: a new model for self-
organized collective motion
arXiv:1403.1202
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