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Experimental realizations 
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Back to real world, but simplified

Experimental model systems

To what extent athermal soft spheres describe such systems ?

Green peas, Hales, 1727 Emulsion, Jorjadze et al., 2011

Colloids, Liu et al., 2010

Grains, Behringer Foam, Katgert et van Hecke, 2010

Grains, Pouliquen
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What about these situations? 

Introduction Setup and Protocol Contacts Statics Contact Dynamics Widom lines Discussion Conclusion
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Colloidal suspensions 
=> thermal agitation 

Dense granular flows 
=> mechanical excitation 

Control of Dynamics by Jamming scalings? 
 

Effect of Dynamics on jammed systems? 
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Initial goal! 

Consider a (very) gently vibrated system of grains and study: 

The glass and the jamming transitions 

! Spontaneous fluctuations : vibrational dynamics vs. relaxation 

 

! Shear Modulus : linear vs. non-linear regime 

 

! Yield stress : thermal vs. mechanical origin 

 

! Flows : rheology 
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What is the plan? 
! Reach jamming, i.e. enter deep into the glass phase 

Numerical evidence: ‘J-line’

• Rapid compressions of hard sphere fluid configurations, starting from
various packing fractions reveals continuous range of jamming densities:
J-point → J-line.

• The normalized pressure, Z = P/(ρkBT ), diverges when ϕ → ϕJ .
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• Location of jamming transition is not uniquely defined but its physical &
scaling properties seem ‘universal’, i.e. shared by all packings.

title – p.42
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Jamming in a system of vibrated brass discs 

µ 

trigger 

Camera 

P

µ 
ω, A  

. 

. 

!  Vibration-trigged camera 
!  Tunable volume 
!  Pressure measured on the side 

!  Horizontal vibration (ω=10 Hz, a=1cm) 
!  Bi-disperse : ds = 4mm  dl = 5mm 
!  8000 brass discs in the system (1500 tracked) 
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Experimental protocol 
! Increase packing fraction stepwise: 

!   Allow for the slow relaxation of pressure 

!  Then decrease packing fraction and record dynamics 

 Φ

Etc.
ΦRLP

Φ

Etc.
ΦRLP
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Experimental protocol 
! Increase packing fraction stepwise: 

!   Allow for the slow relaxation of pressure 

!  Then decrease packing fraction and record dynamics 

 Φ

Etc.
ΦRLP

Φ

Etc.
ΦRLP

A completely frozen structure 
=> A granular glass 
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Dynamics: Heterogeneous tiny displacements 

! Particles trajectories :  
!  Displacement : 
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( )tri


10 
Gulliver 

EC2M Effets Collectifs & Matière Molle    

Dynamical heterogeneities 
Critical jamming/rigidity transition

Fig. 7: Left: typical snapshot of the Qta(!x, τ
∗) (linearly encoded in grayscale) at φJ and the corresponding displacement field

(magnified 5 times). Center: rescaling of ln[G4,a∗(!r, τ
∗)/G4,a∗(0, τ

∗)] as a function of
√

r/ξ4 for 8 densities around φJ . Right:

ξ4 as a function of the packing fraction. The lines are indicative power laws ∼A±/|φ−φJ |
1/2 consistent with our data, but not

an experimental determination of critical exponents.

that the exploration of phase space probes different
contact configurations rather than different structural
arrangements [24].
The length scale, or wave vector, at which the dynam-

ics is probed is varied continuously over more than two
decades (see [25] for a similar analysis in a model of
glass-forming liquid). This analysis reveals that the global
maximum χ∗4(φ) of the four-point susceptibility is reached
for length and time scales a∗(φ) and τ∗(φ) such that
a∗(φ)≈ σφ(τ∗). This implies two important consequences.
First, the collective dynamics occur on length and time
scales selected by the dynamics itself and are not arbitrar-
ily chosen. Second, it was shown for glass-forming liquids
that the dynamical susceptibility χ4,a obeys the following
general inequality: χ4,a ! (∂Qa/∂φ)2〈φ2〉c [13]. Plug-
ging in the scaling behaviors Qa(τ ;φ) = Q̃ (σφ (τ) /a) and
χ4,a(τ) = hφ (τ) χ̃ (σφ(τ)/a), one finds [26] that the tempo-
ral variations of χ4,a, in particular the presence of a global
maximum, are in fact completely encoded in the anom-
alous behavior of σφ(τ), proving the strong connection
between anomalous diffusion and dynamical correlations.
Altogether, the jamming/rigidity transition is found to

be a critical phenomenon characterized by the emergence
of giant dynamical fluctuations at the contact scale,
embodied by extended and collective slip events. We
speculate that these dynamical fluctuations mirror the
underlying heterogeneous force network and its dynamics,
since the contact network is more likely to slip in the
regions of concentrated constraint gradients, i.e. along
force chains. The mechanism by which diffusion sets in
would therefore be through collective contact slips allowed
by force fluctuations. The decorrelation time τD corre-
sponds in this picture to the time it takes for the dynamics
to achieve a complete renewal of the force network. Thanks
to these micro-rearrangements, the effective compression
modulus of the system under vibration turns out to be
orders of magnitude smaller than that of individual grains,
which can be considered as infinitely rigid. We believe
that friction plays an important role here, by allowing the

system to sustain an external pressure at densities smaller
than φa. It would be interesting to elaborate on Edwards’
ideas [27] and understand quantitatively the shape of the
pressure vs. density observed in fig. 3 which appears to
scale as P ∼ (φ−φJ ) close to φJ , as also reported in [16].
Hence, at variance with what is often assumed, the

rigidity/jamming fraction φJ is not the point φg at
which the structure freezes within the experimental
time scales. In fact, studies of glassy systems within a
sort of mean-field approximation suggest that the ideal
glass (or glass/jamming) transition is distinct from the
rigidity/jamming transition [17,18,28] which is also not
the point φa at which dynamics is totally arrested, as
found by us and also reported in [19]: a homogeneous
diffusive regime is found after sufficiently long times both
below and above φJ (at least up to the longest available
times). Only after further compression will the character-
istic time, τ1, diverge, leading to a complete arrest of the
system. In our system, we found φa > 0.845, a lower bound
for the random close-packing fraction. When φJ < φ< φa,
even though the system is mechanically rigid, the vibra-
tion enables it to explore different micro-configurations.
This exploration eventually generates uncorrelated parti-
cles displacements on longer time scales, hence diffusive
motion at a very small scale. What will happen at time
scales much longer than the experimental ones? Depend-
ing on the volume fraction, either the dynamics starts
feeling the frozen structure and subdiffusion sets in again
or the structure unfreezes and diffusion is maintained for
ever. Predicting such very long term evolution amounts
to addressing the question of the existence of an ideal
Kauzmann-like glass/jamming transition and its relation
to the rigidity transition. Such a conceptual issue is
obviously far beyond the scope of the present study.
Following recent work [3], it is tempting to conjecture

that the correlated currents observed here are related to
the extended soft modes that appear when the system
loses or acquires rigidity at φJ . Under the action of a
mechanical drive the system should fail along these soft

46003-p5

11 
Gulliver 

EC2M Effets Collectifs & Matière Molle    

Altogether… 

a frozen structure 

! What is the mechanism responsible for such heterogeneities? 
! Why is there a maximum and not just a divergence, with the pressure? 

The thermal vestiges in Dynamics ?

Dynamical Signature in brass grains Lechenault et al EPL 2008

Maximum dynamic heterogeneities
on tiny scales

0.84 0.841 0.842 0.843 0.844
0

20

40

60

�
�!r
4

⇤

��J

1 What mechanisms do cause such an heterogeneity ?
2 Crossing the jamming transition in hard grains ?

C. Coulais Contacts Dynamics

dynamical heterogeneities 

Introduction Setup and Protocol Contacts Statics Contact Dynamics Widom lines Discussion Conclusion

Back in 2009

Maximum dynamic heterogeneities on tiny scales close to Jamming

In brass grains 5mm particles

Lechenault et al, 2008

In colloids 5µm particles

Ballesta et al, 2008

0

0.5

1

1.5

0.84 0.841 0.842 0.843
0

20

40

F
Mg

�
�!r
4

⇤

�

Typical displacement : a = 10�2 particle diameter.

1 What mechanisms do cause such an heterogeneity ?
2 Why is there a split between “Jamming” and the maximum of �4 ?
3 Is there a specific role of friction ?
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WITH 

Albeit of a very different kind : 
 no cage jumps 
 no change of neighbours 
 a* = 5.10-3 d 
 large correlation length 
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Redo the experiment with soft photoelastic 
discs => access to contacts 
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Same protocole: again a granular glass 

! A frozen structure 

 

 

 

 

 

 

 

 

Obtaining a granular glass

1 Slow logarithmic
compaction

2 Measurement of
dynamics in between
decompaction steps
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Pressure : from kinetic to sti↵ness

Stationnary pressure

Measurement of pressure
with vibration
without vibration
kinetic pressure

0.805 0.81 0.815 0.82
0

0.5

1
F
Mg

�

The photoelastic grains are soft.

C. Coulais Contacts Dynamics

!   But this time a glass of soft discs 
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Contact number measurement

Interparticle force measurement
thresholding
gap < ✏

!
thresholding
force > f0

0.805 0.81 0.815 0.82
2

3

4

5

z

�

Force

threshold

�J

� < �J � ⇠ �J � > �J

C. Coulais Contacts Dynamics

Signature of jamming within contacts 

φ+
 = 0.814 

φ+ 

 φ < φ+  φ > φ+ 
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Dynamics of the contact network… Dynamics : the contact network relaxes heterogeneously

Qz(t, ⌧) =
1

N

X

i

Qz
i (t, ⌧) where Qz

i (t, ⌧) =

(
1 if |zi (t + ⌧)� zi (t)|  1

0 if |zi (t + ⌧)� zi (t)| > 1

Qz(⌧) = hQz(t, ⌧)it

C. Coulais Contacts Dynamics
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Contact Network Dynamics : from unjammed to jammed
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Dynamical arrest of the contact dynamics… 
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…is heterogeneous and governs the grains motion Dynamics : the contact network relaxes heterogeneously

Qz(t, ⌧) =
1

N

X

i

Qz
i (t, ⌧) where Qz

i (t, ⌧) =

(
1 if |zi (t + ⌧)� zi (t)|  1

0 if |zi (t + ⌧)� zi (t)| > 1

Qz(⌧) = hQz(t, ⌧)it

C. Coulais Contacts Dynamics
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Dynamical Heterogeneities of the contact network
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Summary: two distinct signatures Summary : two distinct crossovers !

Hard (Brass) Grains

Lechenault et al EPL 2008
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φ* φ+ φ* φ+ 

J 

γ	



Φ	



δr δz 

φ* φj ? 
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Reducing the vibration 

J 

γ	



Φ	



δr δz 

φ* φ+ 
? 

Introduction Setup and Protocol Contacts Statics Contact Dynamics Widom lines Discussion Conclusion

Decreasing the vibration !

density �

vibration
�

J

�z

�4

��

⇤

?

Three sets of experiments

f = 6.25, 7.50, 10.00Hz
If f < f0 = 4.17 Hz, no motion.

� =
f � f0

f0
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Decreasing the vibration 
Introduction Setup and Protocol Contacts Statics Contact Dynamics Widom lines Discussion Conclusion

Decreasing the vibration !
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Hence two crossover lines 

J Φ	



δr 

δz 

T 

How far from the critical point ? 



29/08/14	
  

6	
  

21 
Gulliver 

EC2M Effets Collectifs & Matière Molle    

Comparison with thermal soft spheres… 

Introduction Setup and Protocol Contacts Statics Contact Dynamics Widom lines Discussion Conclusion

Back to soft spheres, but with temperature

density ��J

density �

Temperature

T

J

Jacquin et al. 2011, Berthier et al., 2011, Ikeda et al., 2012
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Thermal soft spheres : Statics and Dynamics
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Ikeda et al, 2012 

Simulation of thermal soft-spheres 

Introduction Setup and Protocol Contacts Statics Contact Dynamics Widom lines Discussion Conclusion

A hint of thermometry : three measures of “temperature”

⇥ = kinetic energy

potential energy

⇠ “temperature”. Benchmark
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Comparison with soft spheres 

Introduction Setup and Protocol Contacts Statics Contact Dynamics Widom lines Discussion Conclusion

Discussion : Can we go further ?

Where is our experiment ?

Ikeda et al, 2012
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FIG. 16: Mean square displacements. (color online). (a):
Mean square displacements MSD for filtered trajectories (see
text) vs. lag time ⌧ for both the short time (fast camera) and
long time (stroboscopic acquisition) experiments. The pack-
ing fractions explore the same range and are color coded as
in figure 5 the binning being finer for the fast camera acqui-
sition. (b): Plateau value �2 obtained from the short time
data MSD (+), from the long time stroboscopic data MSD (⇥)
and from the low frequency limit of Energy Spectral Density,
�20

f (⇤) vs. reduced packing fraction, ✏ = (� � �†)/�†. (c):
Plateau entrance time ⌧En (�-left axis) and exit time ⌧Ex

(⇤-right axis) vs. reduced packing fraction ✏ = (� � �†)/�†.
The vibration frequency f = 10 Hz, i.e � = 1.4.

packing fraction a crossover towards a di↵usive regime
at long time scales, ⌧Ex < ⌧ . The plateau regime char-
acterizes the vibrational dynamics we are interested in.
The height of the plateau, �2 measures the square of
the average vibration amplitude of the grains within
their cage. It decreases from 10�4 to 10�5 for increas-
ing packing fractions (figure 16(b)), and it is consis-
tent with the first estimate of the cage size, we had ob-
tained in section VA, from the low frequency limit of
the Fourier spectral density of the position fluctuations,
�20

f . The short time entrance to the plateau, estimated

by ⌧En = (�2/K)1/2, where K ' 10�8 is obtained from
the analysis of the ballistic regime, typically occurs at
⌧En ⇠ 100 and slightly decreases as packing fraction is
increased (figure 16(c)-left axis): the larger the packing
fraction, the sooner the grains feel their neighbors and
enter the vibrational regime. The long time exit from
the plateau, ⌧Ex ⇠ 103 � 105, violently increases with

packing fraction and exceeds the experimental time win-
dow as the packing fraction reaches �† (figure 16(c)-right
axis).

The above vibrational dynamics is very similar to the
one reported for thermal harmonic sphere systems close
to jamming [1, 41] : a ballistic regime at short time,
followed by a plateau regime, the height of which de-
creases strongly with the packing fraction when crossing
over the Jamming point. A plateau exit is also reported
in [41], where the authors show that ⌧Ex increases when
the quench rate used to prepare the packing is decreased.
This plateau exit is not reported in [1]. However the
maximum lag time, which is probed is 104 and the sys-
tems are carefully equilibrated, so that ⌧Ex, if it exists, is
probably much larger than the simulated timescales. Be-
fore coming to the more quantitative comparison, wich
will allow us to discuss wether thermal soft spheres are
a good model for mechanically excited grains, we finish
the description of the dynamics by looking at its het-
erogeneities. Note that these heterogeneities, first re-
ported in the brass grains experiment [21] and more re-
cently in the harmonic spheres simulation [1] are distinct
from those encountered in super-cooled liquids when ap-
proaching the glass transition [42]. Here the structure is
frozen, hence the heterogeneities are not related to the
relaxation of the structure. The next section will show
how they are related to the heterogeneities of the contact
dynamics described in section IVB.

VI. DYNAMICAL HETEROGENEITIES

In this section, we investigate the heterogeneities of
the particles displacements. To do so we focus on the
long time stroboscopic data, once the giggling convective
motion has been subtracted. We will show that these
heterogeneities take place at very small scales and are
temporally correlated to the heterogeneities of the con-
tact dynamics. Finally a closer look at the organisation
of the contacts at short time will demonstrate that these
heterogeneities take their root in the short time organi-
sation of the contact network, namely in the vibrational
dynamics of the structure.

A. Heterogeneous non-a�ne dynamics

The characterization of dynamical heterogeneities has
now become a standard tool in the study of the dynam-
ical slowing down of super-cooled liquids and or colloids
approaching their glass transition [42]. It is much less fre-
quently used when probing the jamming transition, but
relies on the same procedure [16]. In order to character-
ize the dynamics, and in particular to probe collective
e↵ects, one defines a dynamical structure factor for the
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FIG. 21: Hard vs. Soft. (color online) Piston force (top)
and Maximal dynamical susceptibiliy of the displacements
(bottom) vs.reduced packing fraction, ✏, for (a): hard, brass,
discs [21] and (b): soft, photo-elastic, discs. (�). PTOT ,
(⇤): PSTAT , (4): PDY N as in figure 6. The vibration fre-
quency f = 10 Hz, i.e. � = 1.4. Dashed lines indicate ✏⇤ and
✏ = 0.

at the packing fraction �†. The second is ”dynamical” in
the sense that it is signed by a maximum of the dynami-
cal heterogeneities of both the contacts and the displace-
ments at a packing fraction �⇤ < �†. We have demon-
strated that the ”dynamical” crossover also takes its root
in the structure of the contact network, however it is re-
lated to the spatial fluctuations of the contacts number
whereas the ”structural” crossover is given by its aver-
age value. Both signatures converge to a unique packing
fraction when the excitation is reduced towards the zero
excitation limit. We interpret this packing fraction as
the jamming transition for the present experimental sys-
tem and compression protocole. The critical nature of
the transition is suggested by the sharp increase of the
dynamical susceptibilities when the vibration is reduced
towards the zero excitation limit. The two crossovers
can be seen as the analogs of the Widom lines reported
in the supercritical region of equilibrium phase transi-
tions [24, 45].

B. Soft vs. Hard

In an earlier experiment, within the same apparatus
but with hard (brass) discs [21, 22], the authors re-
ported the first experimental evidences of dynamical het-
erogeneities involving very small displacements of grains,
within a structure almost completely frozen. These dy-
namical heterogeneities were rather di↵erent from those
observed close to the glass transition and the authors cor-
rectly attributed their observation to jamming. However,
they could not precisely identify the underlying mecha-
nism responsible for these heterogeneities. The present
study has clearly demonstrated that they have their ori-
gin in the dynamics of the contacts network. Also, the
existence of this maximum suggested that the experiment
probed both sides of the jamming transition, a puzzling
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ics signatures of Jamming. (b): MSD Plateau vs. density ✏,
for � = 0.5 (�), � = 0.8 (⇥), � = 1.4 (⇤) and for hard brass
disks at � = 1.4 (3).

conclusion given the very strong sti↵ness of the brass
discs. The present study with soft discs solves this appar-
ent contradiction in the following way. We have seen that
there are several signatures of point J at finite mechan-
ical excitation, �, and that the one associated with the
dynamical heterogeneities occurs at a lower packing frac-
tion, �⇤(�), than the one at which the average number of
contact increases, �†(�). In the case of the brass discs,
the authors reported (see figure 21(a)) that the maximum
of the dynamical heterogeneities occurs for the packing
fraction, where PDYN (�) and PSTAT (�) intersect. This
is also the case for the soft discs (see figure 21(b)): the
experiment with the brass discs had actually probed the
dynamical crossover, �⇤, both sides of which lie below
the structural signature of the jamming transition. In
the case of brass discs, it is not possible to measure the
average number of contacts. However, assuming Hertz
law, the sti↵ness of two compressed 4 mm height cylin-
ders made of brass (Young modulus, E = 100 GPa) is
kbrass ⇠ 3.108 N/m. In comparison, the sti↵ness of the
force sensor and piston system is kpiston ⇠ 6.105 N/m
and the brass grains can be considered as hard. In that
case the Jamming is the point at which the pressure di-
verges [13, 46], and the packing fraction at which the
pressure sharply increases (see figure 21(a)), provides a
good estimate of the structural crossover �†.

One also notices that the range of packing fractions
on which the crossovers are observed are very di↵erent.
The crossovers occur for lower packing fractions and on a
broader range in the case of the soft discs than in the case
of the hard ones. This is not so surprising given that the
friction coe�cient amongst the grains and between the
grain and the glass board are di↵erent. The soft discs
have a larger friction coe�cient so that their jamming
transition in the absence of vibration is expected for lower
values of the packing fraction [7]. They also have a larger
friction coe�cient with the glass board shaking them so
that the energy transfer and dissipation are di↵erent. It is
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FIG. 2: Maps of the strain and stress invariants. (color
online) Maps of dilation, ε ,(a), shear strain, γ, (b), pressure,
P , (c) and shear stress, τ , (d), for φ = 0.8294 and a∗ = 4.4×
10−2. The uncolored grains are the location of the pneumatic
tube connected to the intruder, which masks the field of view.

a∗ = 4.4 × 10−2. Apart from the spatial fluctuations,
inherent to the local response of a disordered material,
one observes that the axisymmetry of the loading is con-
served in the response. Also the response intensity de-
creases with the distance from the intruder and we could
observe no sign of the lateral walls. In other words, the
hypothesis of an infinite cell is rather well verified (note
that the images shown here represent only one third in
length of the whole sample). As a first observation, one
notices that, apart from the very first shell around the
inflater, the dilation ε fluctuates around 0 (fig. 2 a) : the
material is essentially incompressible. This is confirmed
by a closer look at the profile (not shown here) : close
to the intruder a significant dilation occurs because of
the boundary condition geometrical mismatch; but the
rest of the packing compresses slightly and ensures the
conservation of the overall volume. From now on, we
shall remove the first shell around the intruder from the
analysis and assume the incompressibility, that is ε = 0.
The second significant observation is that the pressure
deviates significantly from the elastic response : there
are regions of intense pressure, which do not correspond
to any sort of intense compression. This pressure field is
thus induced by the shear; it is the signature of dilatancy
for an experiment conducted at constant volume, a well
known effect in granular media [28]. Finally whereas the
spatially averaged pressure varies linearly with a∗, the
spatially averaged shear strain increases faster than a∗.
This is a first indication of the nonlinear nature of the
material. We checked however that the shear work τγ
averaged over space scales with a∗2. The above observa-
tions were qualitatively similar for all packing fractions.
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FIG. 3: Constitutive laws. (color online) Pressure ("),
P (a), and shear stress (!), τ (b), vs. shear strain, γ, for
21 packing fractions φ ∈ [0.8102 − 0.8343]. Each data point
result from a binning of the scatter plots P (r, θ) and τ(r, θ)
vs. γ(r, θ), where (r, θ) are the polar coordinates. The solid
lines are given by Eqs. (1-2). Color code spans from blue to
red with increasing packing fractions. (c) and (d): same data
as (a) and (b) rescaled by γc(φ), Pc(φ) and τc(φ). The solid
lines are given by the rescaled version of Eqs. (1-2) and the
dashed lines indicate the asymptotic regimes.

Constitutive laws — We now come to the quantita-
tive analysis of the constitutive laws τ(γ,φ) and P (γ,φ)
which were obtained from collecting all data points into
averages corresponding to binned values of γ. Fig 3(a)
and (b) display the shear stress τ and pressure P versus
the shear strain γ for all the packing fractions probed
here. Below jamming, both the shear stress τ and the
pressure P exhibit the simple expected dependence on
the shear strain: τ = 2G0γ, and P = R0γ2. Above jam-
ming non linearities take place in the form of a significant
shear softening of both the shear modulus and the dila-
tancy. We find that the best description of the data is
given by

P = [R0 +Rnl(∆φ, γ)] γ2 (1)

τ = 2 [G0 +Gnl(∆φ, γ)] γ (2)

with ∆φ = φ − φJ , G0 = 6.0 ± 0.2 × 10−2, R0 = 1.2 ±
0.1× 101 and

Rnl(∆φ, γ) =

{
0 forφ < φJ

a∆φµγα−2 forφ > φJ
,

Gnl(∆φ, γ) =

{
0 forφ < φJ

b∆φνγβ−1 forφ > φJ
,

with µ = 1.7±0.1, α = 1.0±0.1, a = 8.1±0.3×10−2, ν =
1.0 ± 0.1, β = 0.4 ± 0.1, b = 7.5 ± 0.3 × 10−1. From the
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a∗ = 4.4 × 10−2. Apart from the spatial fluctuations,
inherent to the local response of a disordered material,
one observes that the axisymmetry of the loading is con-
served in the response. Also the response intensity de-
creases with the distance from the intruder and we could
observe no sign of the lateral walls. In other words, the
hypothesis of an infinite cell is rather well verified (note
that the images shown here represent only one third in
length of the whole sample). As a first observation, one
notices that, apart from the very first shell around the
inflater, the dilation ε fluctuates around 0 (fig. 2 a) : the
material is essentially incompressible. This is confirmed
by a closer look at the profile (not shown here) : close
to the intruder a significant dilation occurs because of
the boundary condition geometrical mismatch; but the
rest of the packing compresses slightly and ensures the
conservation of the overall volume. From now on, we
shall remove the first shell around the intruder from the
analysis and assume the incompressibility, that is ε = 0.
The second significant observation is that the pressure
deviates significantly from the elastic response : there
are regions of intense pressure, which do not correspond
to any sort of intense compression. This pressure field is
thus induced by the shear; it is the signature of dilatancy
for an experiment conducted at constant volume, a well
known effect in granular media [28]. Finally whereas the
spatially averaged pressure varies linearly with a∗, the
spatially averaged shear strain increases faster than a∗.
This is a first indication of the nonlinear nature of the
material. We checked however that the shear work τγ
averaged over space scales with a∗2. The above observa-
tions were qualitatively similar for all packing fractions.

10−3 10−2
10−4

10−3

10−2
P

γ

10−3 10−2
10−4

10−3

10−2
τ

γ

(a) (b)

10−2 10−1 100 101 102
10−2

10−1

100

101

102
P

Pc

γ

γc

10−2 10−1 100 101 102
10−2

10−1

100

101

102
τ

τc

γ

γc

(c) (d)

FIG. 3: Constitutive laws. (color online) Pressure ("),
P (a), and shear stress (!), τ (b), vs. shear strain, γ, for
21 packing fractions φ ∈ [0.8102 − 0.8343]. Each data point
result from a binning of the scatter plots P (r, θ) and τ(r, θ)
vs. γ(r, θ), where (r, θ) are the polar coordinates. The solid
lines are given by Eqs. (1-2). Color code spans from blue to
red with increasing packing fractions. (c) and (d): same data
as (a) and (b) rescaled by γc(φ), Pc(φ) and τc(φ). The solid
lines are given by the rescaled version of Eqs. (1-2) and the
dashed lines indicate the asymptotic regimes.

Constitutive laws — We now come to the quantita-
tive analysis of the constitutive laws τ(γ,φ) and P (γ,φ)
which were obtained from collecting all data points into
averages corresponding to binned values of γ. Fig 3(a)
and (b) display the shear stress τ and pressure P versus
the shear strain γ for all the packing fractions probed
here. Below jamming, both the shear stress τ and the
pressure P exhibit the simple expected dependence on
the shear strain: τ = 2G0γ, and P = R0γ2. Above jam-
ming non linearities take place in the form of a significant
shear softening of both the shear modulus and the dila-
tancy. We find that the best description of the data is
given by

P = [R0 +Rnl(∆φ, γ)] γ2 (1)
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a∗ = 4.4 × 10−2. Apart from the spatial fluctuations,
inherent to the local response of a disordered material,
one observes that the axisymmetry of the loading is con-
served in the response. Also the response intensity de-
creases with the distance from the intruder and we could
observe no sign of the lateral walls. In other words, the
hypothesis of an infinite cell is rather well verified (note
that the images shown here represent only one third in
length of the whole sample). As a first observation, one
notices that, apart from the very first shell around the
inflater, the dilation ε fluctuates around 0 (fig. 2 a) : the
material is essentially incompressible. This is confirmed
by a closer look at the profile (not shown here) : close
to the intruder a significant dilation occurs because of
the boundary condition geometrical mismatch; but the
rest of the packing compresses slightly and ensures the
conservation of the overall volume. From now on, we
shall remove the first shell around the intruder from the
analysis and assume the incompressibility, that is ε = 0.
The second significant observation is that the pressure
deviates significantly from the elastic response : there
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to any sort of intense compression. This pressure field is
thus induced by the shear; it is the signature of dilatancy
for an experiment conducted at constant volume, a well
known effect in granular media [28]. Finally whereas the
spatially averaged pressure varies linearly with a∗, the
spatially averaged shear strain increases faster than a∗.
This is a first indication of the nonlinear nature of the
material. We checked however that the shear work τγ
averaged over space scales with a∗2. The above observa-
tions were qualitatively similar for all packing fractions.
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a∗ = 4.4 × 10−2. Apart from the spatial fluctuations,
inherent to the local response of a disordered material,
one observes that the axisymmetry of the loading is con-
served in the response. Also the response intensity de-
creases with the distance from the intruder and we could
observe no sign of the lateral walls. In other words, the
hypothesis of an infinite cell is rather well verified (note
that the images shown here represent only one third in
length of the whole sample). As a first observation, one
notices that, apart from the very first shell around the
inflater, the dilation ε fluctuates around 0 (fig. 2 a) : the
material is essentially incompressible. This is confirmed
by a closer look at the profile (not shown here) : close
to the intruder a significant dilation occurs because of
the boundary condition geometrical mismatch; but the
rest of the packing compresses slightly and ensures the
conservation of the overall volume. From now on, we
shall remove the first shell around the intruder from the
analysis and assume the incompressibility, that is ε = 0.
The second significant observation is that the pressure
deviates significantly from the elastic response : there
are regions of intense pressure, which do not correspond
to any sort of intense compression. This pressure field is
thus induced by the shear; it is the signature of dilatancy
for an experiment conducted at constant volume, a well
known effect in granular media [28]. Finally whereas the
spatially averaged pressure varies linearly with a∗, the
spatially averaged shear strain increases faster than a∗.
This is a first indication of the nonlinear nature of the
material. We checked however that the shear work τγ
averaged over space scales with a∗2. The above observa-
tions were qualitatively similar for all packing fractions.
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Constitutive laws — We now come to the quantita-
tive analysis of the constitutive laws τ(γ,φ) and P (γ,φ)
which were obtained from collecting all data points into
averages corresponding to binned values of γ. Fig 3(a)
and (b) display the shear stress τ and pressure P versus
the shear strain γ for all the packing fractions probed
here. Below jamming, both the shear stress τ and the
pressure P exhibit the simple expected dependence on
the shear strain: τ = 2G0γ, and P = R0γ2. Above jam-
ming non linearities take place in the form of a significant
shear softening of both the shear modulus and the dila-
tancy. We find that the best description of the data is
given by

P = [R0 +Rnl(∆φ, γ)] γ2 (1)

τ = 2 [G0 +Gnl(∆φ, γ)] γ (2)

with ∆φ = φ − φJ , G0 = 6.0 ± 0.2 × 10−2, R0 = 1.2 ±
0.1× 101 and

Rnl(∆φ, γ) =

{
0 forφ < φJ

a∆φµγα−2 forφ > φJ
,

Gnl(∆φ, γ) =

{
0 forφ < φJ

b∆φνγβ−1 forφ > φJ
,

with µ = 1.7±0.1, α = 1.0±0.1, a = 8.1±0.3×10−2, ν =
1.0 ± 0.1, β = 0.4 ± 0.1, b = 7.5 ± 0.3 × 10−1. From the
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a∗ = 4.4 × 10−2. Apart from the spatial fluctuations,
inherent to the local response of a disordered material,
one observes that the axisymmetry of the loading is con-
served in the response. Also the response intensity de-
creases with the distance from the intruder and we could
observe no sign of the lateral walls. In other words, the
hypothesis of an infinite cell is rather well verified (note
that the images shown here represent only one third in
length of the whole sample). As a first observation, one
notices that, apart from the very first shell around the
inflater, the dilation ε fluctuates around 0 (fig. 2 a) : the
material is essentially incompressible. This is confirmed
by a closer look at the profile (not shown here) : close
to the intruder a significant dilation occurs because of
the boundary condition geometrical mismatch; but the
rest of the packing compresses slightly and ensures the
conservation of the overall volume. From now on, we
shall remove the first shell around the intruder from the
analysis and assume the incompressibility, that is ε = 0.
The second significant observation is that the pressure
deviates significantly from the elastic response : there
are regions of intense pressure, which do not correspond
to any sort of intense compression. This pressure field is
thus induced by the shear; it is the signature of dilatancy
for an experiment conducted at constant volume, a well
known effect in granular media [28]. Finally whereas the
spatially averaged pressure varies linearly with a∗, the
spatially averaged shear strain increases faster than a∗.
This is a first indication of the nonlinear nature of the
material. We checked however that the shear work τγ
averaged over space scales with a∗2. The above observa-
tions were qualitatively similar for all packing fractions.
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dashed lines indicate the asymptotic regimes.

Constitutive laws — We now come to the quantita-
tive analysis of the constitutive laws τ(γ,φ) and P (γ,φ)
which were obtained from collecting all data points into
averages corresponding to binned values of γ. Fig 3(a)
and (b) display the shear stress τ and pressure P versus
the shear strain γ for all the packing fractions probed
here. Below jamming, both the shear stress τ and the
pressure P exhibit the simple expected dependence on
the shear strain: τ = 2G0γ, and P = R0γ2. Above jam-
ming non linearities take place in the form of a significant
shear softening of both the shear modulus and the dila-
tancy. We find that the best description of the data is
given by

P = [R0 +Rnl(∆φ, γ)] γ2 (1)

τ = 2 [G0 +Gnl(∆φ, γ)] γ (2)

with ∆φ = φ − φJ , G0 = 6.0 ± 0.2 × 10−2, R0 = 1.2 ±
0.1× 101 and

Rnl(∆φ, γ) =

{
0 forφ < φJ

a∆φµγα−2 forφ > φJ
,

Gnl(∆φ, γ) =

{
0 forφ < φJ

b∆φνγβ−1 forφ > φJ
,

with µ = 1.7±0.1, α = 1.0±0.1, a = 8.1±0.3×10−2, ν =
1.0 ± 0.1, β = 0.4 ± 0.1, b = 7.5 ± 0.3 × 10−1. From the
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a∗ = 4.4 × 10−2. Apart from the spatial fluctuations,
inherent to the local response of a disordered material,
one observes that the axisymmetry of the loading is con-
served in the response. Also the response intensity de-
creases with the distance from the intruder and we could
observe no sign of the lateral walls. In other words, the
hypothesis of an infinite cell is rather well verified (note
that the images shown here represent only one third in
length of the whole sample). As a first observation, one
notices that, apart from the very first shell around the
inflater, the dilation ε fluctuates around 0 (fig. 2 a) : the
material is essentially incompressible. This is confirmed
by a closer look at the profile (not shown here) : close
to the intruder a significant dilation occurs because of
the boundary condition geometrical mismatch; but the
rest of the packing compresses slightly and ensures the
conservation of the overall volume. From now on, we
shall remove the first shell around the intruder from the
analysis and assume the incompressibility, that is ε = 0.
The second significant observation is that the pressure
deviates significantly from the elastic response : there
are regions of intense pressure, which do not correspond
to any sort of intense compression. This pressure field is
thus induced by the shear; it is the signature of dilatancy
for an experiment conducted at constant volume, a well
known effect in granular media [28]. Finally whereas the
spatially averaged pressure varies linearly with a∗, the
spatially averaged shear strain increases faster than a∗.
This is a first indication of the nonlinear nature of the
material. We checked however that the shear work τγ
averaged over space scales with a∗2. The above observa-
tions were qualitatively similar for all packing fractions.
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Constitutive laws — We now come to the quantita-
tive analysis of the constitutive laws τ(γ,φ) and P (γ,φ)
which were obtained from collecting all data points into
averages corresponding to binned values of γ. Fig 3(a)
and (b) display the shear stress τ and pressure P versus
the shear strain γ for all the packing fractions probed
here. Below jamming, both the shear stress τ and the
pressure P exhibit the simple expected dependence on
the shear strain: τ = 2G0γ, and P = R0γ2. Above jam-
ming non linearities take place in the form of a significant
shear softening of both the shear modulus and the dila-
tancy. We find that the best description of the data is
given by

P = [R0 +Rnl(∆φ, γ)] γ2 (1)

τ = 2 [G0 +Gnl(∆φ, γ)] γ (2)

with ∆φ = φ − φJ , G0 = 6.0 ± 0.2 × 10−2, R0 = 1.2 ±
0.1× 101 and

Rnl(∆φ, γ) =

{
0 forφ < φJ

a∆φµγα−2 forφ > φJ
,

Gnl(∆φ, γ) =

{
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b∆φνγβ−1 forφ > φJ
,

with µ = 1.7±0.1, α = 1.0±0.1, a = 8.1±0.3×10−2, ν =
1.0 ± 0.1, β = 0.4 ± 0.1, b = 7.5 ± 0.3 × 10−1. From the
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a∗ = 4.4 × 10−2. Apart from the spatial fluctuations,
inherent to the local response of a disordered material,
one observes that the axisymmetry of the loading is con-
served in the response. Also the response intensity de-
creases with the distance from the intruder and we could
observe no sign of the lateral walls. In other words, the
hypothesis of an infinite cell is rather well verified (note
that the images shown here represent only one third in
length of the whole sample). As a first observation, one
notices that, apart from the very first shell around the
inflater, the dilation ε fluctuates around 0 (fig. 2 a) : the
material is essentially incompressible. This is confirmed
by a closer look at the profile (not shown here) : close
to the intruder a significant dilation occurs because of
the boundary condition geometrical mismatch; but the
rest of the packing compresses slightly and ensures the
conservation of the overall volume. From now on, we
shall remove the first shell around the intruder from the
analysis and assume the incompressibility, that is ε = 0.
The second significant observation is that the pressure
deviates significantly from the elastic response : there
are regions of intense pressure, which do not correspond
to any sort of intense compression. This pressure field is
thus induced by the shear; it is the signature of dilatancy
for an experiment conducted at constant volume, a well
known effect in granular media [28]. Finally whereas the
spatially averaged pressure varies linearly with a∗, the
spatially averaged shear strain increases faster than a∗.
This is a first indication of the nonlinear nature of the
material. We checked however that the shear work τγ
averaged over space scales with a∗2. The above observa-
tions were qualitatively similar for all packing fractions.
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dashed lines indicate the asymptotic regimes.

Constitutive laws — We now come to the quantita-
tive analysis of the constitutive laws τ(γ,φ) and P (γ,φ)
which were obtained from collecting all data points into
averages corresponding to binned values of γ. Fig 3(a)
and (b) display the shear stress τ and pressure P versus
the shear strain γ for all the packing fractions probed
here. Below jamming, both the shear stress τ and the
pressure P exhibit the simple expected dependence on
the shear strain: τ = 2G0γ, and P = R0γ2. Above jam-
ming non linearities take place in the form of a significant
shear softening of both the shear modulus and the dila-
tancy. We find that the best description of the data is
given by

P = [R0 +Rnl(∆φ, γ)] γ2 (1)

τ = 2 [G0 +Gnl(∆φ, γ)] γ (2)

with ∆φ = φ − φJ , G0 = 6.0 ± 0.2 × 10−2, R0 = 1.2 ±
0.1× 101 and

Rnl(∆φ, γ) =

{
0 forφ < φJ

a∆φµγα−2 forφ > φJ
,

Gnl(∆φ, γ) =

{
0 forφ < φJ

b∆φνγβ−1 forφ > φJ
,

with µ = 1.7±0.1, α = 1.0±0.1, a = 8.1±0.3×10−2, ν =
1.0 ± 0.1, β = 0.4 ± 0.1, b = 7.5 ± 0.3 × 10−1. From the
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above relations, one obtains the rescaling shown in fig-
ure 3(c),(d) with γc ∼ ∆φζ , τc = 2G0γc and Pc = R0γ2

c .
Despite the fact that the couples of exponents (µ,α)
and (ν,β) have been obtained independently, we obtain
that ζ = µ/(2 − α) and ζ = ν/(1 − β) lead to the
same value ζ = 1.7 as it should be. The above equa-
tions and the related scaling are the key results of the
present study. To our knowledge, this is the first time
that non linear elasticity is quantified precisely approach-
ing the jamming transition of a granular packing. Note
that the ”linear” regime observed here should not be
confused with the linear response and should rather be
seen as a saturation of the nonlinearities. For very small
strain, (γ # 10−6), such as those probed in numerical
studies [3, 36], and much smaller than the lowest strain
probed here (γ # 10−3), one expects to recover a linear
response for all ∆φ > 0 [23]. For strains of experimental
relevance, very recent numerical studies have reported a
crossover from the linear response at small strains to a
shear softening regime, with a exponent β # 0.5 [37, 38],
compatible with the present results.
Shear strain profiles — We finally proceed to a self-

consistency check by integrating the condition of mechan-
ical equilibrium ∇ · σ = 0, with the above constitutive
laws to derive the expected shear strain profiles and com-
pare them with those obtained experimentally. We intro-
duce here the reduced shear strain γ̃ = γ/γc. Axisym-
metry ensures that σ is diagonal in polar coordinate and
independent of the azimuthal coordinate θ. ∇ · σ = 0
thus reads:

Pc(αγ̃α−1 + 2γ̃) + τc(βγ̃β−1 + 1)

γ̃β + γ̃
dγ̃ = −2τc

dr

r
(3)

We integrate numerically Eq. 3 with the boundary con-
dition γ̃(r = rI) = a∗/γc and we obtain the profiles plot-
ted in figure 4(a), together with the experimental data.
The agreement is very satisfactory, given the absence of
any adjustable parameter and the fact that we have ne-
glected the confinement at large r. For intermediate val-
ues of ∆φ and a∗, the crossover of the constitutive law
translates into a spatial crossover with a characteristic
length rc between the saturated linear regime for r < rc,
close to the inflater, and the truly non linear regime for
r > rc. An estimate of rc can be derived by integrating
the above equation in the saturated linear regime and
selecting γ = γc (γ̃ = 1) :

rc
rI

=

(
a∗

γc

)1/2

exp

[
R0

2G0
a∗

(
1− γc

a∗

)]
. (4)

In the limit, γc → 0, approaching jamming, rc ∼ γ−1/2
c ∼

∆φ−0.85. One can indeed observe the emergence of this
singular behavior on figure 4(b), together with the expo-
nential regularization at large ∆φ.
Summary-Discussion — Our measurements provide a

quantitative characterization of the elastic response of
a bi-dimensional packing of grains to the local inflation
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FIG. 4: Shear strain profiles (color online) (a): Shear
strain profile for (!) (φ = 0.8208; a∗ = 0.0374), (!) (φ =
0.8268; a∗ = 0.0314) and (#) (φ = 0.8338; a∗ = 0.0306). The
symbols are experimental data and the solid lines come from
the integration of eq.(3). The green dashed line indicates the
crossover for the case (φ = 0.8268; a∗ = 0.0314) (b): Spa-
tial crossover rc(φ, a

∗)/rI (for a∗ = 0.0208 (green), 0.0440
(turquoise) and 0.0681 (blue) extracted from the experimen-
tal profiles (×) and obtained numerically from eq. (3) (dashed
lines). (Inset): same in log-log axis with the predicted scal-
ing rc ∼ ∆φ−0.85. In both figures, the gray zone is the region
occupied by the inflater.

of an intruder close to jamming. This specific geome-
try actually probes the response to an inhomogeneous
shear at constant volume. Our results highlight the effect
of dilatancy and unveil a nonlinear regime above jam-
ming where both the shear modulus and the dilatancy
coefficient soften. The importance of shear dilatancy in
marginal solids was recently emphasized in [39], where
it was shown that the Reynolds coefficient at constant
volume RV ∼ ∆φ−1/2. Here we also observe a singular
behavior, albeit of a different kind since the present ex-
periment probes the nonlinear softening of the dilatancy.
In a different context, Ren et al. [30] report a steep in-
crease of dilatancy under homogeneous shear as the den-
sity of an unjammed packing of grains is increased. The
dilatancy coefficient R0 reported here is indeed very large
(R0 ∼ 104 N/m) and could be seen as a saturation of the
divergence reported in [30].

Finally, the present study uncovers a length scale, rc,
which separates the nonlinear regime from the saturated
linear one. Its scaling with the distance to jamming does
not match any scaling reported before for length scales
of linear origin, such as )∗ or )c. This suggests that rc
could encompass crucial information about the density
of the low energy non-linear excitations reported recently
for sphere packings [24]. Further insights in this mat-
ter could come from simulations of point-like response
of the kind reported in [7] albeit in the non linear regime.
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We investigate experimentally the mechanical response of a monolayer of bi-disperse frictional
grains to an inhomogeneous shear perturbation across the jamming transition. We inflate an intruder
inside the packing and use photo-elasticity and tracking techniques to measure the induced shear
strain and stresses at the grain scale. We quantify experimentally the constitutive relations for
strain amplitudes as low as 10−3 and for a range of packing fractions within 2% variation around
the jamming transition. At the transition strong nonlinear effects set in : both the shear modulus and
the dilatancy shear-soften at small strain until a critical strain is reached where effective linearity is
recovered. The dependencies of the critical strain and the associated critical stresses on the distance
from jamming are extracted via scaling analysis. We check that the constitutive laws, when applied
to the equations governing mechanical equilibrium, lead to the observed stress and strain profiles.
These profiles exhibit a spatial crossover between an effective linear regime close to the inflater and
the truly nonlinear regime away from it. The crossover length diverges at the jamming transition.

PACS numbers: 45.70.-n 83.80.Fg

Introduction — Understanding the mechanical prop-
erties of dense packings of athermal particles, such
as grains, foams and emulsions, remains a concep-
tual and practical challenge. These intrinsically out-of-
equilibrium systems lose their rigidity at the so-called
jamming transition, which occurs at a packing fraction
φJ , when the confining pressure approaches zero and the
particles deformations vanish [1–4]. The peculiarity of
this transition is best illustrated in the case of friction-
less spheres [2, 3], where the loss of mechanical stability
occurs when the average number of contacts z reaches
its isostatic value. Approaching the transition, the ma-
terial becomes more and more fragile [5], and its linear
response, dominated by floppy modes [6], exhibits critical
scaling [2–4, 7].

In a first step towards the description of such systems,
Wyart and coworkers [6, 8–11] derived a scaling theory
of the jamming transition from a marginal stability prin-
ciple. It describes most of its phenomenology, in partic-
ular the existence of two length scales "∗ ∼ 1/∆z and
"c ∼ 1/∆z1/2, where ∆z ∼ ∆φδ is the excess of con-
tact with respect to isostaticity with ∆φ = φ − φJ and
δ # 0.5. Isostaticity occurs when the number of geometri-
cal and mechanical equilibrium constraints exactly match
the number of degrees of freedom. Recently, marginal-
ity has been translated into the adoption of a full replica
symmetry breaking scheme in the formulation of a mean
field theory of hard sphere glasses at high density [12–14].
As a result, the theory properly describes not only the
thermodynamic properties of the packing, but also the
structural and dynamical ones, when approaching φJ .

The relevance of these theories for real systems remains
to be established. There are very few direct experimen-
tal investigations of the scaling regime above jamming.
The average number of contacts has been measured in
grains [15, 16], foams [17] and emulsions [18] but not with

FIG. 1: (a) Quadrant of combined raw photoelastic and di-
rect light pictures. The intruder (pink) is inflated and in-
duces radial compression and orthoradial stretch (depicted
by the white arrows). As a result, the packing is sheared az-
imuthally. (b) Sketch of the Shear Modulus, G and Dilatancy
R, vs. strain. They behave qualitatively the same. Below γ∗,
both are linear (LR regime). The regime γ∗ < γ < γc is the
shear softening (SS) regime. For γ > γc, effective linear elas-
ticity (SL) is recovered. (c) φ−γ diagram where the different
regimes are indicated. Both γ∗ and γc vanish at Jamming.
The gray regions are beyond the resolution of our setup.

a sufficient accuracy to provide stringent bounds for the
value of the scaling exponent δ. As for the dynamics and
the mechanics, rheology below jamming has been stud-
ied in vibrated grains [19], foams [20] and emulsions [21],
but we are not aware of any direct measurements of the
elastic moduli dependence on the packing fraction when
approaching jamming from above.

Also, the relevance of the linear response very close to
the transition actually remains a matter of debate [22–
24]. At finite shear strain amplitude γ, non-linear effects
become dominant [9, 25, 26] and the mechanical response
of the system is no longer relevantly described exclusively
by ∆z but also by γ in a non-trivial way. Furthermore,
experiments using colloids have thermal agitation, that
is too strong for the packing to experience marginality.
Henceforth they can not be described by jamming scal-
ings [27, 28]. Finally, while dilatancy effects – namely the
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FIG. 9: Three-dimensional ‘jamming phase diagram’ showing
the yield stress surface as a function of the thermodynamic
parameters temperatures and density, in a dimensionless rep-
resentation (particle softness kBT/ε, volume fraction ϕ, and
stress σa3/ε). The three lines represent the location of the
experimental systems discussed in Sec. III. Foams are mainly
sensitive to jamming physics, emulsions display an interest-
ing interplay between glass and jamming transitions, while
PNIPAM microgels undergo a colloidal glass transition.

tally, and solidity genuinely emerges at the jamming tran-
sition. This is the case for foams in Fig. 9 for which
the glass ‘wing’ has negligible effects. Note that PMMA
colloidal suspensions would appear at nearly the same
temperature/softness as foams in the jamming phase di-
agram of Fig. 9. However, with the particle size being
much smaller than for foams, the yield stress emerging
at the colloidal glass transition would easily be measured
experimentally, and the measurements would stop as the
jamming density is approached because the yield stress
would seem to diverge there.
As shown by the jamming phase diagram in Fig. 9,

our analysis is useful in organizing the physics of differ-
ent experimental systems. To confirm this, we have used
our additive rheological model to analyze various exper-
imental flow curves obtained for a variety of dense sus-
pensions. The systems we focussed on were PMMA col-
loids [41], aqueous foam [44], oil-in-water emulsions [47],
and PNIPAM microgels [21, 53]. We have also gathered
experimental data from other sources, in particular ultra-
soft particles composed of star polymers [62], and data for
emulsions with larger droplet sizes [49], but for brevity
the results of our analysis have not been presented in
Sec. III.
We showed that all the above experimental results can

be successfully analyzed using the additive model. It is
instructive to replot all data in a single figure using the
dimensional procedure adopted throughout this paper,
i.e. expressing stress and time scales in thermal units σT

and τT, see Eqs. (3, 5). These flow curves are collected
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FIG. 10: Superposition of experimental flow curves for dif-
ferent materials using thermal units. PMMA colloids with
a = 0.36µm, after Petekidis et al. [41]. Foam with a = 27µm,
after Herzhaft et al. [44]. Emulsion(a) with a = 0.5µm, after
Mason et al. [47]. PNIPAM(a) with a = 0.2µm, after Carrier
et al. [21]. PNIPAM(b) with a = 1.2µm, after Nordstrom et
al. [21]. Star polymers with a = 0.07µm, after Koumakis et
al. [62]. Emulsion(b) with a = 8µm, after Otsubo et al. [49].

in Fig. 10. In this representation, the flow curves for
PMMA colloids, star polymers, PNIPAM microgels lie in
the same sector, which corresponds to the thermal sec-
tor in our model; see Fig. 2. Therefore, the formation of
amorphous solids in these systems stems from the physics
of the colloidal glass transition. On the other hand, foams
lie outside this regime and are controlled, accordingly,
by the jamming transition. Interestingly, emulsions lie
somewhat in between and so are influenced by both types
of physics, as discussed in Sec. III D. Note in particular
that emulsions with larger droplet sizes, also shown in
Fig. 10, could be useful systems to fill the gap between
colloids and foams. While experimental studies of micro-
gel particles have been interpreted from the point of view
of the jamming transition [21], our analysis shows that
for these soft colloidal particles the physics of jamming
has, in fact, only a negligible effect. A similar conclu-
sion has recently been reached based on the analysis of
the short-time vibrational dynamics in the amorphous
phase [55].
Our conclusion that glass and jamming rheologies be-

long to different sectors and contribute linearly to the
shear stress is directly supported by the numerical flow
curves obtained for harmonic spheres, and by the analysis
of the oil-in-water emulsions in Sec. III D which clearly
showed the complex features also observed in the simu-
lations. We mentioned that similar indications are also
found for PMMA colloids, in particular at large Péclet
number and larger density, while microgel suspensions
appear less well suited for a detailed experimental in-
vestigations of the interplay between glass and jamming
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FIG. 9: Three-dimensional ‘jamming phase diagram’ showing
the yield stress surface as a function of the thermodynamic
parameters temperatures and density, in a dimensionless rep-
resentation (particle softness kBT/ε, volume fraction ϕ, and
stress σa3/ε). The three lines represent the location of the
experimental systems discussed in Sec. III. Foams are mainly
sensitive to jamming physics, emulsions display an interest-
ing interplay between glass and jamming transitions, while
PNIPAM microgels undergo a colloidal glass transition.

tally, and solidity genuinely emerges at the jamming tran-
sition. This is the case for foams in Fig. 9 for which
the glass ‘wing’ has negligible effects. Note that PMMA
colloidal suspensions would appear at nearly the same
temperature/softness as foams in the jamming phase di-
agram of Fig. 9. However, with the particle size being
much smaller than for foams, the yield stress emerging
at the colloidal glass transition would easily be measured
experimentally, and the measurements would stop as the
jamming density is approached because the yield stress
would seem to diverge there.
As shown by the jamming phase diagram in Fig. 9,

our analysis is useful in organizing the physics of differ-
ent experimental systems. To confirm this, we have used
our additive rheological model to analyze various exper-
imental flow curves obtained for a variety of dense sus-
pensions. The systems we focussed on were PMMA col-
loids [41], aqueous foam [44], oil-in-water emulsions [47],
and PNIPAM microgels [21, 53]. We have also gathered
experimental data from other sources, in particular ultra-
soft particles composed of star polymers [62], and data for
emulsions with larger droplet sizes [49], but for brevity
the results of our analysis have not been presented in
Sec. III.
We showed that all the above experimental results can

be successfully analyzed using the additive model. It is
instructive to replot all data in a single figure using the
dimensional procedure adopted throughout this paper,
i.e. expressing stress and time scales in thermal units σT

and τT, see Eqs. (3, 5). These flow curves are collected
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FIG. 10: Superposition of experimental flow curves for dif-
ferent materials using thermal units. PMMA colloids with
a = 0.36µm, after Petekidis et al. [41]. Foam with a = 27µm,
after Herzhaft et al. [44]. Emulsion(a) with a = 0.5µm, after
Mason et al. [47]. PNIPAM(a) with a = 0.2µm, after Carrier
et al. [21]. PNIPAM(b) with a = 1.2µm, after Nordstrom et
al. [21]. Star polymers with a = 0.07µm, after Koumakis et
al. [62]. Emulsion(b) with a = 8µm, after Otsubo et al. [49].

in Fig. 10. In this representation, the flow curves for
PMMA colloids, star polymers, PNIPAM microgels lie in
the same sector, which corresponds to the thermal sec-
tor in our model; see Fig. 2. Therefore, the formation of
amorphous solids in these systems stems from the physics
of the colloidal glass transition. On the other hand, foams
lie outside this regime and are controlled, accordingly,
by the jamming transition. Interestingly, emulsions lie
somewhat in between and so are influenced by both types
of physics, as discussed in Sec. III D. Note in particular
that emulsions with larger droplet sizes, also shown in
Fig. 10, could be useful systems to fill the gap between
colloids and foams. While experimental studies of micro-
gel particles have been interpreted from the point of view
of the jamming transition [21], our analysis shows that
for these soft colloidal particles the physics of jamming
has, in fact, only a negligible effect. A similar conclu-
sion has recently been reached based on the analysis of
the short-time vibrational dynamics in the amorphous
phase [55].
Our conclusion that glass and jamming rheologies be-

long to different sectors and contribute linearly to the
shear stress is directly supported by the numerical flow
curves obtained for harmonic spheres, and by the analysis
of the oil-in-water emulsions in Sec. III D which clearly
showed the complex features also observed in the simu-
lations. We mentioned that similar indications are also
found for PMMA colloids, in particular at large Péclet
number and larger density, while microgel suspensions
appear less well suited for a detailed experimental in-
vestigations of the interplay between glass and jamming

Fc ~ 1/(ΦJ-Φ) 
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Pinning-depinning like dynamics => Crackling noise signals 
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Flows : vibro-rheology (with M. van Hecke) 
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FIG. 2: (Color online) Flow curves T (Ω) for Γ = 0, 0.1, . . . 1
as indicated. We normalize T by the dynamic yield torque
Td. Inset: vibrated split-bottom rheological setup.

mounted flush with the bottom. This flow geometry has
been studied extensively and produces smooth, robust
and well-controlled granular flows [19–21].

An important novel aspect of our setup is that the
shear cell can be vibrated vertically and sinusoidally (dis-
tortion < 1%) with frequency f and amplitude A. We fix
f = 63 Hz in the middle of a frequency window where no
mechanical resonances arise. Strictly vertical vibration is
ensured by guiding the motion of the shear cell with a lev-
elled square air-bearing (4”x4”, New Way) which is cou-
pled to a electromagnetic shaker (VTS systems VG100).
We control the dimensionless shaking strength, defined as
Γ := A(2ºf)2/g, with a feedback loop to within < 10°3.

We also control the rotation rate, Ω, and applied
torque, T , by a rheometer (Anton Paar DSR 301), which
is coupled to the vibrating cell by means of a flexure
with a torsional spring constant of 4 Nm/rad and com-
pressional spring constant of 5£102 N/m. We perform
rheological experiments at fixed Γ and either control the
torque T and measure the resulting rotation rate Ω or
vice-versa. All flow experiments are preceded by ap-
propriate pre-shear. Disk rotation is always continuous;
stick-slip is not observed. Note that, as in other flow
geometries, the local strain rate and stress in the split
bottom cell vary throughout the cell [22]. We thus probe
the grain rheology with T as a proxy for the stress æ, and
Ω as a proxy for the strain rate [7, 21]. Hence, the ex-
perimentally observed curves for T (Ω) are best thought
of as global flow curves.

Main Phenomenology: Flow curves — Fig. 2a shows
the flow curves T (Ω), determined in experiments in which
the rotation rate Ω is controlled, and the average torque
T is measured (after removing transients).

The flow curve for Γ = 0 is non-monotonic. For small
flow rates (Ω < 10°3 rad/s), the stress reaches a plateau
from which we determine the dynamical yield torque Td

as 13.9±0.1 mNm — this value is set by the geometry [19]

FIG. 3: (Color online) (a) Finite Γ hysteresis loops for Γ =
0.1, 0.3, 0.5. (b) Several hysteresis loops at Γ = 0.5, with the
rheological data from Γ = 0.5 from Fig. 2 overplotted in black.

and the effective friction coefficient of the grains. For
increasing Ω, T decreases until it reaches a minimum
torque Tmin of about 12.1±0.1 mNm at Ω º 0.3 rps. This
non-monotonic effect is substantial in magnitude and has
not been observed for granular flows before. Around the
minimum, the inertial number near the split is of order
one, and we associate the increase of torque for larger
rates with the onset of inertial flows [3, 4].

The flow curves for Γ > 0 exhibit similarly non-
monotonic behavior, but differ for small Ω. As shown
in Fig. 2a, the flow rates over which the flow curves have
negative slope become smaller for larger Γ. At the lower
Ω range of this regime, T (Ω) reaches a local maximum
and for even smaller Ω . 0.02 rps, we observe a decrease
of T with Ω as T ª log(Ω). In additional experiments at
fixed T we have carefully checked that the flow is stable
and steady in this positive slope regime. This regime only
exists for finite agitation strength and signals a novel flow
regime of mechanically agitated granular flows which is
unique to Γ > 0, as suggested in Fig. 1c.

We conclude that our flow curves are consistent with
the flow scenarios depicted in Fig. 1b-c. In other systems
with non-monotonic flow curves, fixing the flow rate in
the negative-slope regime typically leads to a separation
of the system into two regimes, one with low, and one
with large strain-rate: in other words, shear banding [18].
In contrast, we have not seen any clear evidence for such
behavior in our system — the flow profiles as observed
at the free surface do not appear to change when we
fix the flow rate in the negative-slope regime. We note
that the standard shear banding mechanism depends on
the shear stresses being sufficiently homogeneous, while
in our system we have a strongly inhomogeneous stress
field emanating from the split in the bottom [22] — this
inhomogeneity is crucial in obtaining a smooth granular
flow, but may hinder the observation of additional shear
banding.

Rheological instability for Γ > 0 — We now turn
our attention to torque-controlled experiments, and will
probe whether the negative sloped regime of the flow

Chapter 2. Introduction to Flow of Weakly Vibrated Granular Media
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Figure 2.1: left: Sketch of the vibrated split-bottom setup in which the rotation
of a disk of radius rs is used to probe the rheology of agitated granular media.
The crucial experimental parameters are the relative filling height, H0/rs, vi-
bration amplitude, � , the torque, T , and the rotation rate, ⌦ . Right: Schematic
3D drawing of the setup including the bearings and the shaker. Figure adapted
from [12].

relative humidity. We have verified that our experiments are insensitive
to relative humidities ranging from 6% to 55%. After several months of
use, the black coating of the particles visibly deteriorates, and the rheo-
logical behavior becomes more sensitive to humidity. We therefore renew
our particles on a trimonthly basis, and have found that our experiments
reproduce well over the course of several years.

Rheometer – To drive the rotation of the bottom disk and to measure the
flow properties of the system, we use a rheometer (Anton Paar DSR 301),
which can be used both in stress control (imposing a torque T and mea-
suring the resulting rotation rate ⌦ ) or in rate control (impose ⌦ , measure
T ). The native mode of the rheometer is stress control. Therefore, rate
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Conclusion 
! Vibrated granular media are suitable tools for probing the vicinity of 

jamming, (in particular low enough T_eff) 

! Two distinct crossovers (one dynamical, one structural) converge toward 
J-point in the limit of low vibration 

! Inflating an intruder in soft photo-elastic discs => Non linear rheology  

! Pulling an intruder in vibrated hard discs => the yield stress of “thermal 
origin” and reveals complex pinning – depinning like dynamics 

! Vibro-rheology : flow curves close to jamming 

! Thank you! 
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